引用本文: | 郑晓龙,王凌,王圣尧.求解置换流水线调度问题的混合离散果蝇算法[J].控制理论与应用,2014,31(2):159~164.[点击复制] |
ZHENG Xiao-long,WANG Ling,WANG Sheng-yao.A hybrid discrete fruit fly optimization algorithm for solving permutation flow-shop scheduling problem[J].Control Theory and Technology,2014,31(2):159~164.[点击复制] |
|
求解置换流水线调度问题的混合离散果蝇算法 |
A hybrid discrete fruit fly optimization algorithm for solving permutation flow-shop scheduling problem |
摘要点击 2946 全文点击 2582 投稿时间:2013-07-05 修订日期:2013-09-23 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2013.30675 |
2014,31(2):159-164 |
中文关键词 置换流水车间调度 离散果蝇算法 协作进化 混合算法 |
英文关键词 permutation flow-shop scheduling discrete fruit fly optimization algorithm co-evolution hybrid algorithm |
基金项目 国家重点基础研究发展计划资助项目(2013CB329503); 国家自然科学基金资助项目(61174189). |
|
中文摘要 |
针对置换流水线调度问题, 提出了一种新颖的混合离散果蝇算法. 算法每一代进化包括4个搜索阶段: 嗅觉
搜索、视觉搜索、协作进化和退火过程. 在嗅觉搜索阶段, 采用插入方式生成邻域解; 在视觉搜索阶段, 选择最优邻
域解更新个体; 在协作进化阶段, 基于果蝇个体间的差分信息产生引导个体; 在退火操作阶段, 以一定概率接受最
优引导个体从而更新种群. 同时, 通过试验设计方法对算法参数设置进行了分析, 并确定了合适的参数组合. 最后,
通过基于标准测试集的仿真结果和算法比较验证了所提算法的有效性和鲁棒性. |
英文摘要 |
To solve the permutation flow-shop scheduling problem (PFSP), we propose a novel hybrid discrete fruit fly
optimization algorithm (HDFOA). Each generation of evolution in the algorithm contains four search stages: smell-based
search, vision-based search, co-evolutionary search and annealing procedure. In the smell-based search stage, an insertion
operator is adopted to produce neighbors. In the vision-based search stage, the individuals are replaced by their best
neighbors. In the co-evolutionary search stage, the guiding individuals are produced based on the differential information
among fruit flies. In the annealing procedure, the best guiding fruit flies are accepted according to certain acceptance
probabilities for updating the population. Moreover, the effect from parameter setting is analyzed by using the experiment
design method, and a combination of suitable parameter values is determined. Finally, simulation results and comparisons
based on the benchmark testing sets demonstrate the effectiveness and robustness of the proposed algorithm. |
|
|
|
|
|