引用本文:潘月斗,徐杰,陈继义,陈虎.矩阵变换器输入侧端口受控耗散哈密尔顿算子建模及无源控制[J].控制理论与应用,2014,31(8):1099~1104.[点击复制]
PAN Yue-dou,XU Jie,CHEN Ji-yi,CHEN Hu.Modeling of port-controlled Hamiltonian with dissipation and passivity-based control for input side of matrix convertor[J].Control Theory and Technology,2014,31(8):1099~1104.[点击复制]
矩阵变换器输入侧端口受控耗散哈密尔顿算子建模及无源控制
Modeling of port-controlled Hamiltonian with dissipation and passivity-based control for input side of matrix convertor
摘要点击 2771  全文点击 1171  投稿时间:2013-11-11  修订日期:2014-03-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.31186
  2014,31(8):1099-1104
中文关键词  矩阵变换器  无源性  端口受控耗散哈密顿系统  互联和阻尼配置的无源性控制  双空间矢量调制
英文关键词  matrix converter  passivation  port controlled hamiltonian with dissipation system  interconnection and damping assignment-passivity based control  double space vector modulation
基金项目  中央高校基本科研业务费专项资金资助(FRF-AS-09-006B); 北京市重点学科共建资助项目(XK100080537).
作者单位E-mail
潘月斗* 北京科技大学 自动化学院
钢铁流程先进控制教育部重点实验室 
ydpan@ustb.edu.cn 
徐杰 北京科技大学 自动化学院
钢铁流程先进控制教育部重点实验室 
 
陈继义 北京科技大学 自动化学院
钢铁流程先进控制教育部重点实验室 
 
陈虎 北京科技大学 自动化学院
钢铁流程先进控制教育部重点实验室 
 
中文摘要
      矩阵变换器无中间直流环节, 易受电网扰动和负载扰动的影响. 针对这一问题, 本文设计了矩阵变换器输入侧无源性控制器以改善控制系统特性. 首先, 在直–交坐标系下建立输入侧的端口受控耗散哈密尔顿(port-controlled Hamiltonian with dissipation, PCHD)算子模型. 然后, 设计了基于互联和阻尼配置的无源性控制器, 用来实现对 输入电流快速准确的跟踪. 重新配置了系统的平衡点, 通过注入阻尼提高系统的收敛速度, 并从理论上对闭环系统的渐进稳定性进行了分析. 仿真结果表明, 系统在非正常工况下仍能保证输入电流为正弦, 相比传统偏差修正法, 该控制策略具有更好的动态性能和抗干扰能力.
英文摘要
      Because there is no intermediate direct current loop in matrix converter (MC), MC is sensitive to disturbances in grid voltage and from the load. To deal with this problem, we develop a passivity-based controller in the input side to improve the characteristics of the MC. First, the model of the port-controlled Hamiltonian with dissipation (PCHD) on the input side is built in synchronous d-q coordinates. Then, the passivity controller is redesigned based on the interconnection and the damping assignment (IDA--PBC), for realizing the fast and accurate tracking of the input current. The equilibrium point of the system is reassigned and a damping injection controller is proposed to improve the convergence rate of the system. Theoretically, the proposed control strategy can asymptotically stabilize the close-loop system. Simulation results shows that the input current maintains the sinusoidal waveform under abnormal conditions, and better dynamic performance and higher robustness are achieved in comparison with the traditional error-correction methods.