引用本文:张红强,章兢,周少武,曾照福,吴亮红.未知动态环境下非完整移动群机器人围捕[J].控制理论与应用,2014,31(9):1151~1165.[点击复制]
ZHANG Hong-qiang,ZHANG Jing,ZHOU Shao-wu,ZENG Zhao-fu,WU Liang-hong.Nonholonomic mobile swarm robots hunting in unknown dynamic environments[J].Control Theory and Technology,2014,31(9):1151~1165.[点击复制]
未知动态环境下非完整移动群机器人围捕
Nonholonomic mobile swarm robots hunting in unknown dynamic environments
摘要点击 3223  全文点击 2002  投稿时间:2013-11-27  修订日期:2014-05-27
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.31243
  2014,31(9):1151-1165
中文关键词  移动机器人  群机器人  未知环境  动态障碍物  避障  简化虚拟受力模型
英文关键词  mobile robots  swarm robots  unknown environments  dynamic obstacles  obstacle avoidance  simplified virtual-force model
基金项目  国家自然科学基金资助项目(61174140, 51374107, 61203016, 61174050); 国家自然科学青年基金资助项目(61203309); 湖南自然科学 基金资助项目(13JJ8014); 湖南省教育厅优秀青年项目(12B043); 博士点基金资助项目(20110161110035).
作者单位E-mail
张红强* 湖南大学 电气与信息工程学院
湖南科技大学 信息与电气工程学院 
hongniuok@qq.com 
章兢 湖南大学 电气与信息工程学院  
周少武 湖南科技大学 信息与电气工程学院  
曾照福 湖南科技大学 信息与电气工程学院  
吴亮红 湖南科技大学 信息与电气工程学院  
中文摘要
      针对未知动态障碍物环境下非完整移动群机器人围捕, 提出了一种基于简化虚拟受力模型的自组织方法. 首先给出了个体机器人的运动方程, 然后给出了未知动态环境下目标和动态障碍物的运动模型. 通过对复杂环境 下围捕行为的分解, 抽象出简化虚拟受力模型, 基于此受力模型, 设计了个体运动控制方法, 接着证明了系统的稳定 性并给出了参数设置范围. 不同情况下的仿真结果表明, 本文给出的围捕方法可以使群机器人在未知动态障碍物环 境下保持较好的围捕队形, 并具有良好的避障性能和灵活性. 最后分析了本文与基于松散偏好规则的围捕方法相 比的优势.
英文摘要
      A self-organizing method based on a simplified virtual-force model is proposed for nonholonomic mobile swarm robots hunting in unknown dynamic environment. First, the motion equations of individual robots are given; then the motion models for the hunting target and dynamic obstacles in unknown dynamic environment are presented. Through the decomposition of hunting behavior under complicated environments, a simplified virtual-force model is formed. Based on the virtual-force model, the control method is designed for swarm robots following motions of the hunting target; after that, the stability of the hunting system is analyzed and the control parameter ranges are given. Simulation results for different situations demonstrate that the proposed hunting method can make the group of robots maintain a good hunting formation in unknown dynamic obstacle environments and has good performance of obstacle avoidance and flexibility. Finally, some advantages of this hunting method are presented, compared with the hunting method based on loose-preference rule.