引用本文:樊兆峰,马小平,邵晓根.神经网络预测控制局部优化初值确定方法[J].控制理论与应用,2014,31(6):741~747.[点击复制]
FAN Zhao-feng,MA Xiao-ping,SHAO Xiao-gen.Method to determine initial value of local optimization for neural network predictive control[J].Control Theory and Technology,2014,31(6):741~747.[点击复制]
神经网络预测控制局部优化初值确定方法
Method to determine initial value of local optimization for neural network predictive control
摘要点击 3124  全文点击 2492  投稿时间:2013-12-02  修订日期:2014-02-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2014.31262
  2014,31(6):741-747
中文关键词  神经网络  模型预测控制  优化  初值问题
英文关键词  neural networks  model predictive control  optimization  initial value problems
基金项目  国家自然科学基金资助项目(60974126); 建设部科技计划资助项目(2013–K8–32).
作者单位E-mail
樊兆峰 中国矿业大学 信息与电气工程学院
徐州工程学院 信电学院 
fanzhaofeng72@163.com 
马小平* 中国矿业大学 信息与电气工程学院 xpma@cumt.edu.cn 
邵晓根 徐州工程学院 信电学院  
中文摘要
      为解决局部优化算法初值选取不当造成神经网络预测控制性能下降的问题, 本文提出了一种动态确定初值的方法. 在每次优化时通过逆网络将初值选在输出误差最小点, 通过修正目标性能函数中的权重因子来确保初 值与当前控制量之间存在极值, 并在理论上进行了证明. 以BP神经网络预测控制为例, 采用牛顿拉夫逊算法实现滚动优化, 对所提方法进行了仿真实验, 结果表明能够解决初值问题, 提高控制系统的可靠性.
英文摘要
      To deal with the performance degradation caused by improper initial values in neural network local optimization predictive control, we propose a method to dynamically determine the initial values. In each optimization cycle the minimum output error point is selected by calculating the inverse neural network. The existence of the minimal value of the objective function between this point and the current control point can be ensured and proved through modifying the weighting factor. Finally, a simulation experiment is carried out to verify the proposed method using a back propagation (BP) neural network as the predictive model, and the Newton-Raphson algorithm is employed as the receding horizon optimization strategy. The results show that the initial value problem can be solved to improve the reliability of the control system.