引用本文: | 王艳,纪志成.机床产品制造系统能效的最优控制[J].控制理论与应用,2014,31(10):1431~1440.[点击复制] |
WANG Yan,JI Zhi-cheng.Optimal control of energy efficiency for machine tool manufacturing systems[J].Control Theory and Technology,2014,31(10):1431~1440.[点击复制] |
|
机床产品制造系统能效的最优控制 |
Optimal control of energy efficiency for machine tool manufacturing systems |
摘要点击 2735 全文点击 1985 投稿时间:2014-01-18 修订日期:2014-10-13 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2014.40049 |
2014,31(10):1431-1440 |
中文关键词 机床产品 制造系统 能效 控制 优化 |
英文关键词 machine tool manufacturing system energy efficiency control optimization |
基金项目 国家高技术研究发展计划“863”计划资助项目(2014AA041505); 国家自然科学基金资助项目(61202473). |
|
中文摘要 |
本文结合机床产品制造系统的能量流特性, 研究机床产品制造系统能效的最优控制. 首先, 利用无线传感器网络, 构建制造系统能效感知网络, 并设计了网络能量高效的通信协议, 实时获取制造系统的能效数据. 进而, 利用能效感知数据, 分别从单机设备局部优化与综合资源全局优化两方面, 设计能效优化控制算法. 根据单机设备任意两工步间空载能耗特性, 给出单机设备空载能效最优控制模型. 同时, 建立以缩短生产周期、减少机器空转时间、提高产品合格率为优化目标的综合生产资源能效多目标优化方案. 考虑到所论综合资源能效优化问题是离散组合优化问题, 本文提出了文化基因支配排序粒子群算法进行求解, 并采用层次分析(analysis hierarchy process, AHP)决策方法从Pareto解集中选取最优综合能效的优化策略. 最后, 利用实例与仿真相结合的方法, 验证了文中所提方法的有效性. |
英文摘要 |
By considering the energy flow characteristics, we put forward an optimal control scheme for the energy efficiency of a machine tool manufacturing system. Wireless sensors are employed to build the energy consumption network for the manufacturing system, and an energy-efficiency communication protocol is developed to transmit the real-time manufacturing data. With the sampled real-time data, we design the energy efficiency optimal control scheme for both the
single manufacturing machine and the comprehensive production resources. For a single manufacturing machine, the noload efficiency between any two stages is optimized in the control scheme. For the comprehensive production resources, a multiple-objective optimal control scheme is developed for minimizing the manufacturing cycle, reducing the machine idle time and improving the product quality. Since this is a discrete combinatorial optimization problem, we solve it by using the MA-NSPSO (memetic algorithm-non-dominated sorting particle swarm optimization) algorithm, and select the most proper energy efficiency control strategy from the Pareto solution set by using analsis hierarchy process (AHP) decision method. Finally, the effectiveness of the proposed method is illustrated by examples and simulation. |
|
|
|
|
|