引用本文: | 王乃洲,裴海龙,王俊,张谦.一类饱和非有理系统状态反馈设计[J].控制理论与应用,2015,32(6):823~831.[点击复制] |
WANG Nai-zhou,PEI Hai-long,WANG Jun,ZHANG Qian.State feedback design for a class of non-rational systems subject to actuator saturation[J].Control Theory and Technology,2015,32(6):823~831.[点击复制] |
|
一类饱和非有理系统状态反馈设计 |
State feedback design for a class of non-rational systems subject to actuator saturation |
摘要点击 2479 全文点击 900 投稿时间:2014-04-09 修订日期:2015-03-19 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2015.40293 |
2015,32(6):823-831 |
中文关键词 执行器饱和 状态反馈 非线性系统 线性矩阵不等式 吸引域 |
英文关键词 actuator saturation state feedback nonlinear system linear matrix inequalities region of attraction |
基金项目 |
|
中文摘要 |
本文研究了一类饱和非有理系统状态反馈镇定问题. 通过线性分式表示技术, 这类非有理系统可以转化为带有两个非线性回路的线性时不变(linear time-invariant, LTI)系统. 假设非有理函数项分别满足局部扇形区间不等式以及局部Lipschitz条件, 提出了两种基于LMI条件的镇定方法. 最后, 举例证明了所提出方法的有效性. |
英文摘要 |
This paper focuses on the stabilization of a class of non-rational systems subject to actuator saturation. In particular, by using the linear-fractional representation (LFR) technique, the non-rational system is transformed into a linear time-invariant (LTI) system with two additional feedback loops between nonlinear terms. Assuming that the non-rational term is locally sector -bounded or locally Lipschitz, we propose two kinds of LMI-based synthesis conditions. Finally, a numerical example illustrates the effectiveness of the proposed approaches. |
|
|
|
|
|