引用本文:邹权,钱林方,蒋清山.永磁同步电机伺服系统的自适应模糊滑模控制[J].控制理论与应用,2015,32(6):817~822.[点击复制]
ZOU Quan,QIAN Lin-fang,JIANG Qing-shan.Adaptive fuzzy sliding-mode control for permanent magnet synchronous motor servo system[J].Control Theory and Technology,2015,32(6):817~822.[点击复制]
永磁同步电机伺服系统的自适应模糊滑模控制
Adaptive fuzzy sliding-mode control for permanent magnet synchronous motor servo system
摘要点击 2676  全文点击 1269  投稿时间:2014-05-06  修订日期:2015-03-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40402
  2015,32(6):817-822
中文关键词  自适应控制  模糊逻辑  滑模控制  扰动观测器  永磁同步电机
英文关键词  adaptive control  fuzzy logic  sliding mode control  disturbance observer  permanent magnet synchronous motor
基金项目  
作者单位E-mail
邹权* 南京理工大学 机械工程学院 zouquan101@163.com 
钱林方 南京理工大学 机械工程学院  
蒋清山 南京理工大学 机械工程学院  
中文摘要
      针对永磁同步电机伺服系统的跟踪控制问题, 提出了一种基于扰动观测器的自适应模糊滑模控制方法. 通过扰动观测器估计等效扰动, 改善了系统的动态性能和稳态性能, 并且只需要等效扰动的变化有界, 而不是为零, 放宽了要求; 根据模糊控制原理引入3条模糊规则, 在保证滑模条件的前提下有效地削弱了抖振; 采用自适应策略估计模糊系统参数的最优值, 简化了控制器的设计. 实验结果表明, 与常规自适应模糊滑模控制相比, 本文提出的控制方法不仅能够有效地减小跟踪误差, 而且能够改善参数估计过程, 保证了参数估计的有界性.
英文摘要
      An adaptive fuzzy sliding-mode control based on disturbance observer is proposed for the tracking control of permanent magnet synchronous motor servo system. The lumped disturbance is estimated by a disturbance observer, so that the dynamic and steady-state performances of the closed system are significantly improved. Moreover, the variation of the lumped disturbance is required to be bounded only, instead of zero; this is a much less restrictive requirement. Three fuzzy rules are introduced according to the fuzzy control theory to reduce the chattering phenomena, and the existence condition of sliding-mode is guaranteed. Adaptive mechanism is utilized to estimate the optimal value of the fuzzy system parameters, and the controller design is simplified. Experimental results show that the proposed control scheme can effectively reduce the tacking error in comparison with the traditional adaptive fuzzy sliding-mode control scheme. Moreover, the estimation precision of fuzzy system parameters is enhanced and the boundedness of parameter estimation is guaranteed.