引用本文:周晓根,张贵军,梅珊,明洁.基于抽象凸估计选择策略的差分进化算法[J].控制理论与应用,2015,32(3):388~397.[点击复制]
ZHOU Xiao-gen,ZHANG Gui-jun,MEI Shan,MING Jie.Differential evolution algorithm based on abstract convex underestimate selection strategy[J].Control Theory and Technology,2015,32(3):388~397.[点击复制]
基于抽象凸估计选择策略的差分进化算法
Differential evolution algorithm based on abstract convex underestimate selection strategy
摘要点击 2909  全文点击 2026  投稿时间:2014-06-07  修订日期:2014-12-17
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40525
  2015,32(3):388-397
中文关键词  差分进化  全局优化  下界估计  抽象凸  支撑向量
英文关键词  differential evolution  global optimization  underestimate  abstract convex  support vector
基金项目  国家自然科学基金项目(61075062, 61379020), 浙江省自然科学基金项目(LY13F030008), 浙江省科技厅公益项目(2014C33088), 浙江省重中之 重学科开放基金资助项目(20120811), 杭州市产学研合作项目(20131631E31)资助.
作者单位E-mail
周晓根 浙江工业大学 信息工程学院 zhouxiaogen53@126.com 
张贵军* 浙江工业大学 信息工程学院 zgj@zjut.edu.cn 
梅珊 浙江工业大学 信息工程学院  
明洁 浙江工业大学 信息工程学院  
中文摘要
      针对传统差分进化算法计算代价、可靠性及收敛速度的问题, 提出一种基于抽象凸估计选择策略的差分进 化算法(DEUS). 首先, 通过提取新个体的邻近个体建立局部抽象凸下界松弛模型; 然后, 利用下界松弛模型估计目 标函数值来指导种群更新, 同时利用下界估计区域极值点快速枚举算法系统排除部分无效区域; 最后, 借助线性拟 凸包络的广义下降方向有效地实现局部增强. 12个标准测试函数的实验结果表明, 所提算法计算代价、可靠性及收 敛速度均优于DE及DERL, DELB, SaDE等改进算法.
英文摘要
      To solve the problems of computational cost, success rate and convergence speed in the conventional differential evolution algorithm, we propose a new differential evolution algorithm based on abstract convex underestimate selection strategy (DEUS). Firstly, the local abstract convex lower relaxed model is constructed by extracting the neighboring individuals of the new individual. Then, the underestimate values which are estimated through the lower relaxed model are used to guide the update process of the population, and some invalid regions of the domain where the global optimum cannot be found are systematically excluded by using the fast enumeration algorithm of the local minimum in the underestimate regions. Finally, the generalized descent directions of the linear quasi convex envelope are employed for local enhancement. Experiments results of 12 benchmark functions show that the proposed algorithm is superior to DE, DERL, DELB and SaDE algorithm in terms of computational cost, success rate and convergence speed.