引用本文:刘久富,刘文良,周建勇,刘海阳,王志胜,刘春生.改进的部分可观Petri网系统在线故障诊断器设计[J].控制理论与应用,2015,32(7):866~872.[点击复制]
LIU Jiu-fu,LIU Wen-liang,ZHOU Jian-yong,LIU Hai-yang,WANG Zhi-sheng,LIU Chun-sheng.An improved design of online fault diagnosis for partially observed Petri net systems[J].Control Theory and Technology,2015,32(7):866~872.[点击复制]
改进的部分可观Petri网系统在线故障诊断器设计
An improved design of online fault diagnosis for partially observed Petri net systems
摘要点击 3117  全文点击 1592  投稿时间:2014-08-13  修订日期:2015-04-02
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40748
  2015,32(7):866-872
中文关键词  故障诊断  部分可观Petri网  整数线性规划  广义互斥约束
英文关键词  fault diagnosis  partially observed Petri nets  integer linear programming  generalized mutual exclusion constraints (GMEC)
基金项目  国家自然科学基金项目(61473144)资助.
作者单位E-mail
刘久富* 南京航空航天大学 自动化学院 liujiufu2@126.com 
刘文良 南京航空航天大学 自动化学院  
周建勇 南京航空航天大学 自动化学院  
刘海阳 东南大学 电子科学与工程学院  
王志胜 南京航空航天大学 自动化学院  
刘春生 南京航空航天大学 自动化学院  
中文摘要
      本文研究部分可观Petri网建模的离散事件系统的故障检测问题. 针对现有的部分可观Petri网系统的在线故障诊断器存在故障诊断率较低的缺陷, 本文提出了整数线性规划与广义互斥约束集成的部分可观Petri网系统在线故障诊断改进算法. 假定部分可观Petri网系统的结构与初始标识为已知, 故障被建模为不可观变迁. 首先, 算法需要观测接收事件序列, 求解部分可观Petri网的整数线性规划问题, 算法对系统的故障进行初步诊断. 初步诊断为不确定诊断的情形, 采用广义互斥约束的方法进行诊断. 最后, 通过离散事件系统实例分析, 采用本文的算法, 故障诊断率显著提高, 验证了算法的有效性.
英文摘要
      We study the fault diagnosis problem for discrete event systems (DES) which can be modeled by the partially observed Petri net (POPN). To overcome the low diagnosis ability of the currently POPN online fault diagnosis instruments, we propose an improved online fault diagnosis algorithm that integrates the generalized mutual exclusion constraints (GMEC) and Integer Linear Programming (ILP). We assume that the POPN structure and its initial markings are known, and the faults are modeled as unobservable transitions. First, the event sequence is observed and recorded; and then, the ILP problems of POPN are solved for primary diagnosis for the system behavior. If the results in the primary diagnosis are uncertain, we use the GMEC for a further diagnosis. A real discrete event system is taken as an example for analysis; the results show that the proposed algorithm increases the diagnosis ability remarkably and the effectiveness of the proposed algorithm is validated.