引用本文:陈泳锟,王元,苏为洲.鲁棒稳定性对最优二次型控制设计的约束[J].控制理论与应用,2015,32(5):591~597.[点击复制]
CHEN Yong-kun,WANG Yuan,SU Wei-zhou.Robust stability constraints on linear quadratic optimal control[J].Control Theory and Technology,2015,32(5):591~597.[点击复制]
鲁棒稳定性对最优二次型控制设计的约束
Robust stability constraints on linear quadratic optimal control
摘要点击 3218  全文点击 1808  投稿时间:2014-08-24  修订日期:2015-01-01
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40779
  2015,32(5):591-597
中文关键词  伺服系统  内模原理  LQR最优控制  鲁棒稳定性  卡尔曼等式
英文关键词  servo systems  internal model  LQR optimal control  robust stability  Kalman’s equality
基金项目  国家自然科学基金项目(61273109, 61104219), 广东省教育厅育苗项目(LYM11010)资助.
作者单位E-mail
陈泳锟 华南理工大学 自动化科学与工程学院
自主系统与网络控制教育部重点实验室 
ykchenscut@163.com 
王元 华南理工大学 自动化科学与工程学院
自主系统与网络控制教育部重点实验室 
 
苏为洲* 华南理工大学 自动化科学与工程学院
自主系统与网络控制教育部重点实验室 
wzhsu@scut.edu.cn 
中文摘要
      高品质反馈系统中, 对象的模型不确定性给最优控制设计带来许多困难. 本文针对车载“动中通”天线伺 服系统, 研究了一种内模扩展的线性二次调节器(LQR)最优控制设计方法. 根据卡尔曼等式和小增益定理, 给出了 系统的鲁棒稳定性对控制器设计参数的约束条件, 以及鲁棒稳定裕量与二次最优性能指标参数的定量关系. 最后通 过MATLAB仿真和实际系统实验, 验证了控制器的有效性.
英文摘要
      Plant uncertainties make it difficult to design optimal linear quadratic regulator (LQR) feedback controllers. The key issue is that for LQR optimal control design problem, there is no effective way to select proper weighting parameters in the cost function to guarantee the robust stability of the systems. This work investigates the internal model extended LQR optimal control design for the servo system in a communications on the move (COTM) system. Based on the Kalman’s equality and the small gain theorem, the robust stability constraints on the weighting parameters in the cost function are elaborated and the quantitative relationship between the robust stability margin and the weighting parameters in the cost function are derived. Finally, the effectiveness of the results in this work is validated by MATLAB simulations and experimental results.