引用本文:刘福才,贾亚飞,刘爽爽.气动加载系统的积分型线性自抗扰控制[J].控制理论与应用,2015,32(8):1090~1097.[点击复制]
LIU Fu-cai,JIA Ya-fei,LIU Shuang-shuang.Integral-linear active disturbance rejection controller for pneumatic force control system[J].Control Theory and Technology,2015,32(8):1090~1097.[点击复制]
气动加载系统的积分型线性自抗扰控制
Integral-linear active disturbance rejection controller for pneumatic force control system
摘要点击 2602  全文点击 1485  投稿时间:2014-09-29  修订日期:2015-09-10
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40917
  2015,32(8):1090-1097
中文关键词  气动加载系统  积分型线性自抗扰控制器  非线性时变系统
英文关键词  pneumatic force control system  integral-linear active disturbance rejection controller  time-varying nonlinear system
基金项目  国家高技术研究发展计划(“863”计划)课题, 河北省自然科学基金项目(F2015203362)资助.
作者单位E-mail
刘福才* 燕山大学 工业计算机控制工程河北省重点实验室 lfc@ysu.edu.cn 
贾亚飞 燕山大学 工业计算机控制工程河北省重点实验室
华北电力大学 电气与电子工程学院 
 
刘爽爽 燕山大学 工业计算机控制工程河北省重点实验室  
中文摘要
      气动加载系统是复杂的非线性时变系统, 可变参数和不确定性比较多, 本文采用积分型线性自抗扰控制器(I--LADRC)对气动加载系统进行控制. 自抗扰控制器(active disturbance rejection controller, ADRC)结构简单, 不依赖于被控对象精确的数学模型, 可以很好补偿被控系统内外各种不确定性. 加入积分环节用来弥补ADRC在时变系统控制中存在的不足. 在采用VC++6.0的工控试验平台上, 将I--LADRC应用于气动加载系统中, 分别在加载压力为恒值、方波和正弦波时进行空载和加载实验, 并将得到的实验结果与PID控制算法进行比较,实验结果表明该控制 算法不仅响应速度快, 精度高, 并且还具有较强的鲁棒性, 具有良好的工程应用前景.
英文摘要
      The pneumatic force control system is a highly nonlinear system with a lot of variable parameters and uncertainties. An integral-linear active disturbance rejection controller (I--LADRC) is proposed for a pneumatic force control system. The structure of ADRC is simple and less depending on the mathematic model of the system, and compensates both the internal and external uncertainties. An integral part is added to remedy the deficiencies of ADRC when it is applied to a time-varying system. On the VC++6.0 industrial control experiment platform, the I--LADRC is applied to the pneumatic force control system for implementing the no-load and loaded experiments; the loading pressure is constant, square wave and sinusoidal wave, respectively. The comparison of the simulation and experiment results with those obtained from the PID algorithm demonstrates that this controller provides a faster response, higher precision and stronger robustness, showing a promise prospect of engineering application.