引用本文:李晓明,牛玉广,王世林,林忠伟,李明扬.双馈风机自适应神经分散协调预测控制[J].控制理论与应用,2015,32(7):902~911.[点击复制]
LI Xiao-ming,NIU Yu-guang,WANG Shi-Lin,LIN Zhong-Wei,LI Ming-Yang.Adaptive neural decentralized-coordinated predictive control of double fed induction generator[J].Control Theory and Technology,2015,32(7):902~911.[点击复制]
双馈风机自适应神经分散协调预测控制
Adaptive neural decentralized-coordinated predictive control of double fed induction generator
摘要点击 2968  全文点击 1204  投稿时间:2014-10-17  修订日期:2015-04-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.40972
  2015,32(7):902-911
中文关键词  双馈感应发电机  分散协调控制  神经网络  模型预测控制
英文关键词  double fed induction generator  decentralized-coordinated control  neural network  model predictive control
基金项目  国家重点基础研究发展计划项目(“973”计划)(2012CB215203); 国家自然科学基金项目(61203043); 新能源电力系统 国家重点实验室项目(LAPS14014); 中央高校基本科研业务费专项基金资助.
作者单位E-mail
李晓明* 华北电力大学 控制与计算机工程学院 lxm0121038@163.com 
牛玉广 新能源电力系统国家重点实验室(华北电力大学)  
王世林 华北电力大学 控制与计算机工程学院  
林忠伟 新能源电力系统国家重点实验室(华北电力大学)  
李明扬 新能源电力系统国家重点实验室(华北电力大学)  
中文摘要
      目前, 双馈感应发电机转子侧励磁控制系统均依据“孤立”模型设计. “孤立”模型忽略了各子系统 之间、各控制器之间的相互作用, 因此这种控制器仅对改善本系统的控制特性有一定作用. 针对 以上情况, 提出了一种自适应神经分散协调控制策略, 并将其应用于双馈感应发电机转子侧励磁控制系统 仿真研究中. 首先, 利用电力关联测量法建立了基于本地变量的双馈风机关联测量模型. 其次, 以关联 测量模型作为预测模型, 采用多模型预测控制器对双馈风机转子侧励磁系统进行控制. 最后, 利用可在线 调整的人工神经网络作为多模型加权控制器以补偿双馈风机强非线性、工作区间变化范围大的特点. 主导特征值分析和动态仿真表明: 该控制策略不仅实现了高精度的最大功率跟踪控制, 而且在电力系统 故障时可提供持续的、充足的阻尼.
英文摘要
      At present, all designs of rotor-side excitation control system of double fed induction generator (DFIG) are based on the stand-alone machine model, in which the interactions between subsystems and existing controllers were not considered. In this situation, those “stand-alone machine”-based controllers will have only certain effects on improving the local system dynamics. Considering the problems above, we propose the adaptive neural decentralized-coordinated predictive control (ANDPC). Firstly, the interaction measurement method is introduced to build the local signal-based interaction measurement model (IMM) of DFIG. Secondly, a multiple model predictive control scheme based on the obtained IMM is proposed to control the rotor-side excitation system of DFIG. Finally, an artificial neural network (ANN) trained online is employed as a weighting controller to cope with the nonlinearities and the large operating range of DFIG. The dominanteigenvalue analysis and dynamic simulations demonstrate that the proposed ANDPC scheme not only achieves an accurate maximum power point tracking (MPPT) control performance, but also provides a consistently enhanced contribution to network damping over the full operating range.