引用本文:蒋萍,王玉振.移动机器人对气体泄漏源的定位—–矩阵半张量积方法[J].控制理论与应用,2015,32(12):1676~1683.[点击复制]
JIANG Ping,WANG Yu-zhen.Mobile robot gas source localization: a semi-tensor product approach[J].Control Theory and Technology,2015,32(12):1676~1683.[点击复制]
移动机器人对气体泄漏源的定位—–矩阵半张量积方法
Mobile robot gas source localization: a semi-tensor product approach
摘要点击 3086  全文点击 1424  投稿时间:2014-12-17  修订日期:2015-07-20
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.41176
  2015,32(12):1676-1683
中文关键词  矩阵半张量积  视嗅觉融合  机器人  气体泄漏源定位
英文关键词  semi-tensor product of matrices  fusion of vision and olfaction  mobile robot  gas source localization
基金项目  国家自然科学基金项目(61374065, 61403161), 山东省泰山学者基金项目资助.
作者单位E-mail
蒋萍* 山东大学 cse_jiangp@ujn.edu.cn 
王玉振 山东大学  
中文摘要
      对于使用移动机器人在风速/风向变化较大的气流环境中定位气体泄漏源的问题, 我们建立了一个定位模 型. 模型的输入为机器人在定位过程中实时获取的多传感器信息(激光信息、视觉信息、气体浓度信息、风信息等), 输出为相应的搜寻行为或策略, 主要包括避障行为、随机搜寻、视觉搜寻、化学趋向性搜寻、风趋向性搜寻、路径规 划和气体泄漏源定位等. 利用矩阵的半张量积理论, 我们确定了这个模型输入和输出之间的结构矩阵. 根据多传感 器的测量信息, 结构矩阵产生相应的搜寻行为或策略, 由动态机器人有效地完成, 以确定气体源的位置. 本方法的可 靠性经过机器人实地实验得到验证.
英文摘要
      We build the localization model for a mobile robot in locating the gas source in the airflow environments where both the wind speed and direction have relatively large-scale fluctuation. The inputs to the localization model are multi-sensor information, such as vision, olfaction and wind information,and so on. The outputs are the corresponding searching behaviors/methods including the avoiding behavior, random searching, visual searching, chemotaxis searching, anemotaxis searching, path planning and gas source declaration, and so forth. A structural matrix of the localization model is set up based on the semi-tensor product theory. According to the measured information from multi-sensor, this structural matrix generates the corresponding searching behaviors/methods that will be efficiently carried out by the mobile robot to locate the gas source. The reliability of the proposed model is validated by real robot experiments.