引用本文:张强,于宏亮,许德智,于美娟.基于自组织小波小脑模型关节控制器的不确定非线性系统鲁棒自适应终端滑模控制[J].控制理论与应用,2016,33(3):387~397.[点击复制]
ZHANG Qiang,YU Hong-liang,XU De-zhi,YU Mei-juan.A robust adaptive integral terminal sliding mode control for uncertain nonlinear systems using self-organizing wavelet cerebella model articulation controller[J].Control Theory and Technology,2016,33(3):387~397.[点击复制]
基于自组织小波小脑模型关节控制器的不确定非线性系统鲁棒自适应终端滑模控制
A robust adaptive integral terminal sliding mode control for uncertain nonlinear systems using self-organizing wavelet cerebella model articulation controller
摘要点击 3389  全文点击 2294  投稿时间:2015-02-01  修订日期:2015-08-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2016.50103
  2016,33(3):387-397
中文关键词  terminal滑模控制  自适应控制  有限时间收敛  小脑模型  自组织神经网络
英文关键词  terminal sliding mode control  adaptive control  finite-time convergence  cerebellar model articulation controller (CMAC)  self-organizing neural networks (SONN)
基金项目  国家自然科学基金项目(61403161, 61503156), 山东省自然科学基金项目(ZR2012FQ030), 济南大学博士基金项目(XBS1459)资助.
作者单位E-mail
张强* 济南大学 zhang_hongyu198023@163.com 
于宏亮 济南大学  
许德智 江南大学  
于美娟 济南大学  
中文摘要
      针对一类不确定非线性系统的跟踪控制问题, 在考虑建模误差、参数不确定和外部干扰情况下, 以良好的跟踪 性能及强鲁棒性为目标, 提出基于自组织小脑模型(self-organizing wavelet cerebellar model articulation controller, SOWCMAC)的鲁棒自适应积分末端(terminal)滑模控制策略. 首先, 将小脑模型、自组织神经网络和小波函数各自优势 相结合, 给出一种SOWCMAC, 以保证干扰估计方法具有快速学习能力和更好的泛化能力. 其次, 设计两种改进 的terminal滑模面构造方法, 并分别给出各自的收敛时间. 然后, 基于SOWCMAC和改进的积分terminal滑模面, 给出不 确定非线性系统鲁棒自适应非奇异terminal控制器的设计过程, 其中通过构造自适应鲁棒项抑制干扰估计误差对系统跟 踪性能的影响, 并利用Lyapunov理论证明闭环系统的稳定性. 最后, 将该方法应用于近空间飞行器姿态的控制仿真实验, 结果表明所提出方法有效性.
英文摘要
      We propose a robust adaptive integral terminal sliding mode control method using self-organizing wavelet cerebella model articulation controller (SOWCMAC) for a class of uncertain nonlinear systems with modeling error, parameter uncertainty and external disturbances to achieve the desired tracking performance and strong robustness. Firstly, we make use of the advantages of cerebella model articulation controller, self-organizing neural networks and wavelet function in developing the SOWCMAC to ensure the fast learning ability and desirable generalization ability. Next, we design two kinds of improved integral terminal sliding surfaces and express their convergence time in the analytical form. With the SOWCMAC and improved integral terminal sliding surfaces, we develop the robust adaptive nonsingular terminal controller for the uncertain nonlinear systems. The adaptive robust term can offset the impact of the approximation errors for the system. The stability of the closed-loop system is proved by using the Lyapunov theory. The method is applied to control the attitude system of a near space vehicle. The results show that the proposed method is effective.