引用本文:田小敏,费树岷,柴琳.具有死区输入的分数阶混沌系统的有限时间同步[J].控制理论与应用,2015,32(9):1240~1245.[点击复制]
TIAN Xiao-min,FEI Shu-min,CHAI Lin.Finite-time synchronization of fractional-order chaotic systems by considering dead-zone phenomenon[J].Control Theory and Technology,2015,32(9):1240~1245.[点击复制]
具有死区输入的分数阶混沌系统的有限时间同步
Finite-time synchronization of fractional-order chaotic systems by considering dead-zone phenomenon
摘要点击 2398  全文点击 1522  投稿时间:2015-03-28  修订日期:2015-06-25
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.50247
  2015,32(9):1240-1245
中文关键词  有限时间同步  不确定分数阶混沌系统  滑模控制  Lyapunov稳定理论
英文关键词  finite-time synchronization  uncertain fractional-order chaotic system  sliding mode control  Lyapunov’s stability theory
基金项目  
作者单位E-mail
田小敏* 东南大学 tianxiaomin100@163.com 
费树岷 东南大学  
柴琳 东南大学  
中文摘要
      本文提出一种新型分数阶滑模控制方案来实现两个不同分数阶混沌系统的有限时间同步. 首先, 根据实际情况, 在研究系统同步过程中, 充分考虑死区非线性输入、参数不确定性、模型不确定性以及外界扰动对系统的影 响, 然后, 采用Lyapunov稳定理论证明滑模阶段和趋近阶段均是有限时间收敛的, 最后, 给出一个仿真实例充分验证本文所提出控制策略的有效性和可行性.
英文摘要
      A novel fractional-order sliding-mode control (FSMC) scheme is proposed to realize the finite-time syn- chronization between two different fractional-order chaotic systems. We assume that both master system and slave system are perturbed by parameter uncertainties, model uncertainties and external disturbances. Moreover, the effects of dead- zone nonlinearities in control inputs are also taken into consideration. Lyapunov’s stability theory is applied to prove that both reaching phase and sliding phase are of finite-time convergence. A simulation example is provided to validate the effectiveness and feasibility of the proposed scheme.