引用本文: | 彭高丰,蒋伟进.具有积分二次约束属性的网络控制系统H∞容错控制[J].控制理论与应用,2016,33(3):406~412.[点击复制] |
PENG Gao-feng,JIANG Wei-jin.H-infinity fault-tolerant control for networked control systems with integral quadratic constraints performance[J].Control Theory and Technology,2016,33(3):406~412.[点击复制] |
|
具有积分二次约束属性的网络控制系统H∞容错控制 |
H-infinity fault-tolerant control for networked control systems with integral quadratic constraints performance |
摘要点击 3402 全文点击 2078 投稿时间:2015-04-05 修订日期:2015-10-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.50270 |
2016,33(3):406-412 |
中文关键词 网络控制系统 积分二次约束性 不等间隔采样 传感器故障 H∞控制 |
英文关键词 networked control systems IQC performance unequal interval sampling sensor fault H-infinity control |
基金项目 国家自然科学基金项目(61472136)资助. |
|
中文摘要 |
针对一类具有积分二次约束属性的时滞网络控制系统, 研究了系统在不等间隔采样下的H∞容错控制. 首
先, 分析并处理了网络控制系统中时滞与不等间隔采样之间的关系. 以此为基础, 建立了不等间隔采样下的不确定
时滞网络控制系统的切换模型. 通过构造Lyapunov函数, 运用H∞控制方法, 以及设计具有积分二次约束属性的控
制器, 获得了基于LMI描述的系统时滞依赖稳定性判据. 然后, 建立了网络控制系统的传感器故障模型和传感器故
障下的网络控制系统数学模型. 通过把结论运用到传感器出现故障的网络控制系统, 得到了系统在H∞容错控制下
的稳定性判据. 最后, 通过与其他文献介绍的方法进行比较的一个例子, 说明了该方法的有效性. |
英文摘要 |
For a class of networked control systems (NCSs) with time-delay and integral quadratic constraints
(IQC)performance, we investigate the H-infinity fault-tolerant control under the unequal interval sampling. First of all,
the relationship between the delay and the unequal interval sampling in the NCSs is analyzed and processed. On this basis,
the switching model of NCSs with uncertain time-delay under unequal interval sampling is built. By constructing Lyapunov
function, using H-infinity control method, and designing controller with IQC performance, the delay-dependent stability
criterion based on LMI description systems is obtained. Then, the sensor fault model and the mathematical model of NCSs
under the sensor fault are built. By applying the conclusion to the NCSs with sensor fault,we obtain the stability criterion
of the systems under H-infinity fault tolerant control. By comparing the performances of a given example with that obtained
from other existing methods, we confirm the feasibility of the presented method. |
|
|
|
|
|