引用本文:徐 君,张国良,曾 静,汤文俊,黄鑫.离散时间高阶不确定线性多个体系统保性能一致性分析[J].控制理论与应用,2016,33(6):841~848.[点击复制]
XU Jun,ZHANG Guo-liang,ZENG Jing,TANG Wen-jun,Huang Xin.Guaranteed cost consensus analysis of discrete-time high-order uncertain linear multi-agent systems[J].Control Theory and Technology,2016,33(6):841~848.[点击复制]
离散时间高阶不确定线性多个体系统保性能一致性分析
Guaranteed cost consensus analysis of discrete-time high-order uncertain linear multi-agent systems
摘要点击 3626  全文点击 1927  投稿时间:2015-05-21  修订日期:2016-03-23
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2016.50429
  2016,33(6):841-848
中文关键词  不确定系统  离散时间  多个体系统  一致性  保性能
英文关键词  uncertain systems  discrete-time  multi-agent systems  consensus  guaranteed cost
基金项目  国家自然科学基金项目(61374054).
作者单位E-mail
徐 君* 火箭军工程大学301教研室 Junxu1021@126.com 
张国良 火箭军工程大学301教研室  
曾 静 火箭军工程大学大学数学教研室  
汤文俊 火箭军工程大学301教研室  
黄鑫 火箭军长沙地区代表室  
中文摘要
      本文研究了存在参数不确定性的离散时间高阶多个体系统保性能一致性问题, 给出了一种设计其线性一 致性协议的方法. 首先, 通过模型转换的方法将该问题转换为一组离散时间不确定系统的稳定性问题; 然后, 构造 合适的Lyapunov函数并利用离散时间系统稳定性理论, 推导出一个使离散时间高阶不确定多个体系统获得保性能 一致的LMI充分条件; 接着, 以一致性序列的形式给出参数不确定条件下的离散时间高阶多个体系统的一致性收敛 结果. 最后, 参数不确定的对比数值仿真验证了本文理论的正确性和有效性.
英文摘要
      A guaranteed cost consensus problem of discrete-time high-order linear multi-agent systems with parameter uncertainties is studied, and a linear consensus protocol of it is designed in this paper. Firstly, the consensus problem is transformed into a stability problem of a group of general discrete-time uncertain linear systems via a model transformation method. Secondly, by constructing a suitable Lyapunov function and using the stability theory of discrete-time linear systems, a sufficient LMI condition is derived to insure that the discrete-time high-order uncertain linear multi-agent systems achieve guaranteed cost consensus. Thirdly, convergence results are given as consensus function sequences of discrete-time high-order linear multi-agent systems with parameter uncertainties. Finally, a contrast numerical experiment with uncertain parameters is provided to demonstrate the correctness and effectiveness of the theoretical results.