引用本文: | 梁潇,方勇纯,孙宁.平面四旋翼无人飞行器运送系统的轨迹规划与跟踪控制器设计[J].控制理论与应用,2015,32(11):1430~1438.[点击复制] |
LIANG Xiao,FANG Yong-chun,SUN Ning.Trajectory planning and tracking controller design for a planar quadrotor unmanned aerial vehicle transportation system[J].Control Theory and Technology,2015,32(11):1430~1438.[点击复制] |
|
平面四旋翼无人飞行器运送系统的轨迹规划与跟踪控制器设计 |
Trajectory planning and tracking controller design for a planar quadrotor unmanned aerial vehicle transportation system |
摘要点击 3105 全文点击 1997 投稿时间:2015-05-27 修订日期:2015-11-23 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2015.50454 |
2015,32(11):1430-1438 |
中文关键词 四旋翼无人飞行器 运送系统 相平面 轨迹规划 反步法 |
英文关键词 quadrotor UAV transportation system phase plane trajectory planning backstepping |
基金项目 国家杰出青年科学基金项目(61325017)资助. |
|
中文摘要 |
对于四旋翼无人飞行器运送系统而言, 需要保证飞行过程中负载的摆幅维持在适当的范围内, 并且在飞行
器到达目的地后负载无残余摆动. 本文针对四旋翼无人飞行器运送系统, 提出了一种新颖的轨迹规划与跟踪控制方
法. 论文首先得到了平面四旋翼无人飞行器的运动特性与负载摆角之间的非线性耦合关系. 通过相平面内的几何
分析, 分别设计了两个轴方向上的分段式加速度轨迹. 这种轨迹具有简洁的解析表达式并可获得较高的运送效率,
同时满足飞行器的速度, 加速度等物理约束. 为了使四旋翼无人飞行器准确跟踪规划好的轨迹, 本文基于反步法设
计了一种非线性跟踪控制器, 并通过李雅普诺夫方法对其闭环稳定性进行分析, 证明其能使跟踪误差指数收敛于
零. 论文最后通过仿真结果验证了本文所提出方法的可行性与有效性, 及其对外界干扰的鲁棒性. |
英文摘要 |
For a quadrotor unmanned aerial vehicle (UAV) transportation system, it is necessary to keep the payload
swing within an appropriate range in the flight course, and the residual swing should vanish when the UAV reaches the
destination. To meet these requirements, we propose a novel method of trajectory planning and tracking control for the
quadrotor UAV transportation system. In this method the nonlinear coupling behavior between the planar motion and the
load swing of the quadrotor UAV is first determined; and then, we derive a simple expression for each segmented acceleration
trajectory along two planar coordinates in the phase plane. Because of their simplicities, these segmented trajectories
are easy to be applied to design a backstepping-based nonlinear tracking controller for obtaining an efficient transportation
course while satisfying the physical constraints on velocity and acceleration of the UAV. The stability of the closed-loop
system is proved by using Lyapunov techniques, which ensures that the tracking error exponentially converges to zero.
Simulation results show the feasibility and effectiveness of the proposed approach in achieving the desired performance
indices while providing robustness against external disturbances. |
|
|
|
|
|