引用本文:吴青坡,周绍磊,刘伟,尹高扬.基于集散式模型预测控制的多无人机协同分区搜索[J].控制理论与应用,2015,32(10):1414~1421.[点击复制]
Wu Qing-po,Zhou Shao-lei,Liu Wei,Yin Gao-yang.Multi-unmanned aerial vehicles cooperative search based on central-distributed model predictive control[J].Control Theory and Technology,2015,32(10):1414~1421.[点击复制]
基于集散式模型预测控制的多无人机协同分区搜索
Multi-unmanned aerial vehicles cooperative search based on central-distributed model predictive control
摘要点击 2797  全文点击 2309  投稿时间:2015-05-31  修订日期:2015-08-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2015.50482
  2015,32(10):1414-1421
中文关键词  集散式体系结构  协同搜索  时敏目标  多无人机  区域分割
英文关键词  centrally-distributed control architecture  cooperative search  time-critical targets  multi-unmanned aerial vehicles (UAVs)  area decomposition
基金项目  
作者单位E-mail
吴青坡* 海军航空工程学院控制工程系 山东 qingpo@yeah.net 
周绍磊 海军航空工程学院控制工程系 山东  
刘伟 海军航空工程学院控制工程系 山东  
尹高扬 海军航空工程学院控制工程系 山东  
中文摘要
      针对多无人机在对大范围目标区域执行协同搜索任务时搜索资源分配不均、容易因频繁转场造成资源浪 费等问题, 借鉴集中式控制和分布式控制结构的优点, 建立了集散式多无人机(unmanned aerial vehicle, UAV)协同搜 索结构体系, 通过聚类分析和V图划分等方法对目标区域进行分区, 结合各子区域任务特点对无人机群进行搜索任 务分配, 并采用一种经改进后可有效增大UAV预测范围的预测控制模型, 研究了动态环境下多UAV集散式协同分区 搜索问题, 最后, 将所提方法与常见几种协同搜索方法进行对比仿真, 获取仿真结果验证了所提方法在目标发现概 率和搜索效率方面的有效性和优越性.
英文摘要
      When multiple unmanned aerial vehicles (UAVs) implement their surveillance and search operations in a broad-expanse uncertain environment, there exists resource-wasting on repetitive searching or frequent transition from one cell to another based on some traditional search algorithms. Promoted by the advantages in the central and distributed control architectures, we propose a multi-UAV cooperative search strategy to partition the target area by clustering analysis and voronoi partitioning. An improved predictive model is presented to design the multi-UAVs search strategy under dynamic environment. Finally, comparing various simulation results demonstrate the validity of the proposed cooperative search strategy.