引用本文: | 陈志旺,王小飞,邵玉杰,张子振,李国强.三参数区间数多属性决策的后悔理论方法[J].控制理论与应用,2016,33(9):1214~1224.[点击复制] |
CHEN Zhi-wang,WANG Xiao-fei,SHAO Yu-jie,ZHANG Zi-zhen,LI Guo-qiang.Regret theory approach to multiple attribute decision making with three-parameter interval number[J].Control Theory and Technology,2016,33(9):1214~1224.[点击复制] |
|
三参数区间数多属性决策的后悔理论方法 |
Regret theory approach to multiple attribute decision making with three-parameter interval number |
摘要点击 3346 全文点击 1829 投稿时间:2015-11-16 修订日期:2016-06-06 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.50910 |
2016,33(9):1214-1224 |
中文关键词 决策 多属性决策 三参数区间数 后悔理论 注水原理 |
英文关键词 decision making multiple attribute decision making three-parameter interval number regret theory waterfilling theory |
基金项目 国家自然科学基金项目(61403331, 61573305), 河北省自然科学基金青年基金项目(F2014203099), 燕山大学青年教师自主研究计划课题 (13LGA006)资助. |
|
中文摘要 |
本文将后悔理论方法用于解决三参数区间数多属性决策问题. 首先, 提出一种将三参数区间数转换为两参
数区间数的方法, 避免了传统三参数区间数在大小比较方面不确定信息的遗失. 其次, 依据两参数区间数决策信息
计算不同状态下备选方案及正理想方案各属性的效用值, 从而可得各备选方案的后悔–欣喜值及综合感知效用值.
然后, 针对权重范围已知的情况, 通过构建备选方案综合感知效用最大化优化模型求得属性权重; 针对权重信息完
全未知的情况, 提出一种基于注水原理的属性权重求解方法. 最后, 利用属性权重加权求和方法得到备选方案综合
效用值, 从而通过比较综合效用值得到方案的排序结果. |
英文摘要 |
A kind of regret theory approach is developed for multiple attribute decision making with three-parameter interval
number. Firstly, three-parameter interval number is converted into two-parameter interval number before comparison
between two three-parameter interval numbers for avoiding loss of uncertain information. Secondly, regret-rejoice value
and overall perceived utility value of alternatives are obtained by the utility value of each attribute for alternatives and the
positive ideal alternative according to the decision information with two-parameter interval number under different states.
Thirdly, if the scope of attribute weights is known,the attribute weights are achieved by constructing a programming
model which satisfies the maximum overall perceived utility values of alternatives;if weight information is completely
unknown,the attribute weights are got by water-filling theory. Finally overall utility values of alternatives are calculated
with weighted sum method, therefore, a ranking of alternatives can be determined by comparison of overall utility value of
alternatives. |
|
|
|
|
|