引用本文:范家华,马磊,周攀,刘佳彬,周克敏.基于径向基神经网络的压电作动器建模与控制[J].控制理论与应用,2016,33(7):856~862.[点击复制]
FAN Jia-hua,MA Lei,ZHOU Pan,LIU Jia-bin,ZHOU Ke-min.Modeling and control of piezoelectric actuator based on radial basis function neural network[J].Control Theory and Technology,2016,33(7):856~862.[点击复制]
基于径向基神经网络的压电作动器建模与控制
Modeling and control of piezoelectric actuator based on radial basis function neural network
摘要点击 2857  全文点击 2238  投稿时间:2015-11-26  修订日期:2016-03-21
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2016.50940
  2016,33(7):856-862
中文关键词  率相关  迟滞  RBF神经网络  压电作动器  Hammerstein模型
英文关键词  rate-dependent  hysteresis  RBF neural network  piezoelectric actuator  Hammerstein model
基金项目  国家自然科学基金重点项目(61433011)资助.
作者单位E-mail
范家华* 西南交通大学电气工程学院 644015131@qq.com 
马磊 西南交通大学电气工程学院  
周攀 西南交通大学电气工程学院  
刘佳彬 西南交通大学电气工程学院  
周克敏 路易斯安那州立大学  
中文摘要
      针对压电作动器(piezoelectric actuator, PEA)的率相关迟滞非线性特性, 构建了Hammerstein模型对压电作 动器建模. 采用径向基(radial basis function, RBF)神经网络模型表征迟滞非线性, 利用自回归历遍模型(auto-regressive exogenous, ARX)表征频率的影响, 并对模型参数进行了辨识. 此模型可以在信号频率在1  300 Hz范围内时, 较好地描述压电作动器的迟滞特性, 建模相对误差为1:99% 4:08%. 采用RBF神经网络前馈逆补偿控制, 结合PI反 馈的复合控制策略实现跟踪控制, 控制误差小于2:98%, 证明了控制策略的有效性.
英文摘要
      For the rate-dependent hysteresis nonlinearity of piezoelectric actuators, a Hammerstein model is established. Using a radial-basis-function (RBF) neural network to represent the hysteresis nonlinearity, an auto-regressive exogenous (ARX) model to represent the impact of frequency, and parameter identification is also accomplished. The proposed model describes the hysteresis characteristics of frequency ranged from 1 to 300 Hz of the signals, and the relative error is 1:99%  4:08%. A compound control strategy with RBF neural network feedforward inverse compensation and PI feedback is utilized for position tracking control, and the relative error less than 2:98%. Validity of the control strategy is proved by experimental results.