引用本文: | 苏旭,邹媛媛,牛玉刚,贾廷纲.事件触发双模分布式预测控制[J].控制理论与应用,2016,33(9):1139~1146.[点击复制] |
SU Xu,ZOU Yuan-yuan,NIU Yu-gang,JIA Ting-gang.Event-triggered dual-mode distributed model predictive control[J].Control Theory and Technology,2016,33(9):1139~1146.[点击复制] |
|
事件触发双模分布式预测控制 |
Event-triggered dual-mode distributed model predictive control |
摘要点击 4636 全文点击 2037 投稿时间:2015-12-06 修订日期:2016-09-19 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.50964 |
2016,33(9):1139-1146 |
中文关键词 大系统 分布式控制系统 模型预测控制 事件触发控制 |
英文关键词 large-scale systems distributed control systems model predictive control event-triggered control |
基金项目 国家自然科学基金项目(61673174, 61374107), 国家科技支撑计划(2015BAF10B00)资助. |
|
中文摘要 |
本文针对有界扰动作用下的线性离散大系统, 提出了事件触发双模分布式预测控制设计方法. 利用输入状
态稳定性(input-to-state stability, ISS)理论建立了仅与子系统自身信息相关的事件触发条件. 只有子系统满足相应的
事件触发条件, 才进行状态信息的传输和分布式预测控制优化问题的求解, 并与邻域子系统交互最优解作用下的关
联信息. 当子系统进入不变集时, 采用状态反馈控制律进行镇定, 并与进入不变集的邻域子系统不再交互信息. 分析
了算法的递推可行性和系统的闭环稳定性, 给出了扰动的上界. 最后, 通过车辆控制系统对算法进行仿真验证, 结
果表明, 本文提出的方法能够有效降低优化问题的求解次数和关联信息的交互次数, 节约计算资源和通信资源. |
英文摘要 |
This paper proposes an event-triggered dual-mode distributed model predictive control method for large-scale
linear discrete-time systems subject to bounded disturbances. The event-triggering condition, which involves information
of the subsystem itself, is obtained by the input-to-state stability (ISS) theory. Only when the event-triggering condition
is satisfied, the state measurement is sent and the distributed model predictive control optimization problem is solved.
Meanwhile, the subsystem exchanges its optimal state trajectories with neighbor subsystems. When the subsystem enters
the invariant set, the state feedback control law will be applied. Moreover, no information will be exchanged between the
subsystem and its neighbor subsystems which also enter the invariant sets. The upper bound of disturbances are derived by
analyzing the recursive feasibility and closed-loop stability. Finally, the algorithm is verified through the vehicle control
systems. Simulation results show that the presented method is able to reduce the solving frequency of optimization problems
and the number of information transmissions, thus saving the computation resources and communication resources. |
|
|
|
|
|