引用本文: | 陈阳,王大志.基于加权Karnik-Mendel算法的区间二型模糊逻辑系统降型[J].控制理论与应用,2016,33(10):1327~1336.[点击复制] |
CHEN Yang,Wang Dazhi.Type-reduction of interval type–2 fuzzy logic systems with weighted Karnik-Mendel algorithms[J].Control Theory and Technology,2016,33(10):1327~1336.[点击复制] |
|
基于加权Karnik-Mendel算法的区间二型模糊逻辑系统降型 |
Type-reduction of interval type–2 fuzzy logic systems with weighted Karnik-Mendel algorithms |
摘要点击 4540 全文点击 2395 投稿时间:2016-02-24 修订日期:2016-10-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2016.60098 |
2016,33(10):1327-1336 |
中文关键词 区间二型模糊逻辑系统 降型 Karnik-Mendel算法 积分 加权Karnik-Mendel算法 计算机仿真 |
英文关键词 interval type–2 fuzzy logic systems type-reduction Karnik-Mendel algorithms integration weighted Karnik-Mendel algorithms computer simulation |
基金项目 国家自然科学基金项目(61374113), 辽宁省高校基本科研业务费项目(JL201615410)资助. |
|
中文摘要 |
二型模糊逻辑系统是当前的学术研究的热点问题, 而降型是该系统中非常重要的一个模块. Karnik-Mendel
(KM)算法是被用来计算和完成区间二型模糊逻辑系统降型的标准算法. 通过比较离散版本KM算法中求和运算和
连续版本的KM(continuous version of KM, CKM)算法中求积分运算, 本文利用数值积分技术中牛顿- 柯斯特求积公
式将标准KM算法扩展成3种不同形式的加权KM(weighted KM, WKM)算法. 而KM算法只是WKM算法中的一种特
殊情况. 3个计算机仿真例子用来阐述和分析WKM算法的表现, 与传统的KM算法相比, WKM算法有较小的绝对误
差和较快的收敛速度, 给二型模糊逻辑系统设计者和应用者提供了潜在的应用价值. |
英文摘要 |
Studies on type–2 fuzzy logic systems is a hot topic in the current academic area. While type-reduction is
one of the most important blocks in the systems. KM algorithms are standarded algorithms which are used to compute
and perform the type-reduction of interval type–2 fuzzy logic systems. By comparing the sum operation in discretized
version KM algorithms and the integral operation in continuous version of KM (CKM) algorithms, the paper extends
the standarded KM algorithms to three different forms of weighted KM (WKM) algorithms according to the Newton-
Cotes quadrature formulas of numerical integration techniques. And the KM algorithms become a special case of the
WKM algorithms. Three computer simulation examples are used to illustrate and analyze the performance of the WKM
algorithms. Compared with the traditional KM algorithms, the WKM algorithms have smaller absolute error and faster
convergence speed, which provide the potential application value for designers and adopters of type–2 fuzzy logic systems. |