引用本文:邹奎,苟兴宇,范达.含多正弦扰动的航天器无拖曳控制系统性能极限研究[J].控制理论与应用,2017,34(4):449~456.[点击复制]
ZOU Kui,Gou Xingyu,FAN Da.Performance limitations for spacecraft drag-free control system in the presence of multi-sinusoidal disturbance[J].Control Theory and Technology,2017,34(4):449~456.[点击复制]
含多正弦扰动的航天器无拖曳控制系统性能极限研究
Performance limitations for spacecraft drag-free control system in the presence of multi-sinusoidal disturbance
摘要点击 2714  全文点击 2387  投稿时间:2016-08-03  修订日期:2016-12-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60580
  2017,34(4):449-456
中文关键词  无拖曳控制  谱分解  Wiener-Hopf  指标分解
英文关键词  drag-free control  spectral decomposition  Wiener-Hopf  performance budgeting
基金项目  国家自然科学基金项目(51505472)
作者单位E-mail
邹奎* 北京控制工程研究所 iukzou@sina.com 
苟兴宇 北京控制工程研究所  
范达 钱学森空间技术实验室  
中文摘要
      本文研究了航天器无拖曳控制系统的性能极限问题. 将空间环境扰动描述为一个阶跃分量、一个平稳随机分量和多个正弦分量的线性组合, 利用残余非保守力的稳态方差度量扰动抑制性能, 并运用Wiener-Hopf设计方 法求解最小灵敏度函数. 为确保残余非保守力的渐近平稳性, 将最小灵敏度函数表示为反馈系统的频域拓扑结构,并推导了闭环系统的极限指标. 结合无拖曳控制指标, 讨论了加速度计模式下的传感器、执行器的指标分解问题.
英文摘要
      This paper is to contribute to the understanding of performance limitations for spacecraft drag-free control system. Environmental disturbance is modeled as a linear combination of a step component, a stationary stochastic component and several sinusoids with different frequencies. Disturbance rejection is measured by the steady-state variance of the residual non-gravitational force, and Wiener-Hopf design method is used to solve the minimizing sensitivity function. To guarantee the asymptotic stationary of the residual non-gravitational force, the minimizing sensitivity function accounting for the toplogical structure of the feedback system is used to derive the limiting performance. By using the drag-free control requirement, performance budgeting of actuator and sensor in accelerometer mode are discussed.