引用本文:李大字,于文龙,靳其兵.一阶时滞系统线性自抗扰控制器参数稳定域分析[J].控制理论与应用,2017,34(9):1244~1249.[点击复制]
LI Da-zi,YU Wen-long,JIN Qi-bing.Stability region analysis of linear active disturbance rejection controllers for first order systems with time delay[J].Control Theory and Technology,2017,34(9):1244~1249.[点击复制]
一阶时滞系统线性自抗扰控制器参数稳定域分析
Stability region analysis of linear active disturbance rejection controllers for first order systems with time delay
摘要点击 3162  全文点击 1925  投稿时间:2016-09-27  修订日期:2017-05-10
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60717
  2017,34(9):1244-1249
中文关键词  线性自抗扰控制  双轨迹法  时滞  稳定化
英文关键词  linear active disturbance rejection control  dual-locus diagram method  time delay  stabilization
基金项目  国家自然科学基金项目(61573052)资助.
作者单位E-mail
李大字* 北京化工大学自动化研究所 lidz@mail.buct.edu.cn 
于文龙 北京化工大学自动化研究所  
靳其兵 北京化工大学自动化研究所  
中文摘要
      当使用线性自抗扰控制器(linear active disturbance rejection controller, LADRC)控制时滞系统时, 闭环系统 的稳定性与控制器参数的选取有较大的关系. 如何定量求取线性自抗扰针对时滞系统的参数稳定域还没有有效的 方法. 本文针对线性自抗扰控制器控制一阶时滞系统, 利用双轨迹法精确求解出了线性自抗扰控制器参数的稳定 域. 该方法利用双轨迹的图形性质, 有效地将求解具有时滞的控制系统闭环特征方程根的分布问题转化为求解双轨 迹交点频率的问题, 从而得到能够保证闭环系统稳定性的控制器参数稳定域. 求得的稳定域为时滞系统线性自抗扰 控制器的整定提供了理论依据. 仿真结果验证了所提出方法的有效性.
英文摘要
      The selection of controller parameters plays an important role to the stability of the closed-loop system when a linear active disturbance rejection controller (LADRC) is used to control a time-delay system. Unfortunately, for timedelay systems, there is no effective way to quantificationally obtain the stability region of LADRC. In this paper, the stability region of LADRC parameters is accurately determined by the dual-locus diagram method for first order time-delay systems controlled by LADRC. Motivated by the dual-locus diagram property, the problem of solving characteristic equation root distribution of control systems with time delay is effectively transformed into the problem of finding the frequency of the dual-locus diagram intersection point. Thus, the stability region which can guarantee the stability of the closed-loop system can be obtained. The obtained stability region provides a theoretical basis for the LADRC tuning of system with time delay. Simulation results demonstrate the validity of the proposed method.