引用本文:艾子义,雷德明.基于新型蛙跳算法的低碳柔性作业车间调度[J].控制理论与应用,2017,34(10):1361~1368.[点击复制]
AI Zi-yi,LEI De-ming.A novel shuffled frog leaping algorithm for low carbon flexible job shop scheduling[J].Control Theory and Technology,2017,34(10):1361~1368.[点击复制]
基于新型蛙跳算法的低碳柔性作业车间调度
A novel shuffled frog leaping algorithm for low carbon flexible job shop scheduling
摘要点击 2697  全文点击 1410  投稿时间:2016-10-18  修订日期:2017-05-16
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60768
  2017,34(10):1361-1368
中文关键词  柔性作业车间  碳排放  蛙跳算法  记忆
英文关键词  flexible job shop  carbon emission  shuffled frog leaping algorithm  memory
基金项目  国家自然科学基金项目(61573264, 71471151, 61374151)
作者单位E-mail
艾子义* 武汉理工大学 1179237261@qq.com 
雷德明 武汉理工大学  
中文摘要
      针对低碳柔性作业车间调度问题(flexible job shop scheduling problem, FJSP), 提出一种新型蛙跳算法(shuffled frog leaping algorithm, SFLA)以总碳排放最小化, 该算法运用记忆保留搜索所得一定数量的最优解, 并采取基 于种群和记忆的种群划分方法, 应用新的搜索策略如全局搜索与局部搜索的协调优化以实现模因组内的搜索, 取消 种群重组使算法得到简化. 采用混合遗传算法和教–学优化算法作为对比算法, 大量仿真对比实验验证了SFLA对于 求解低碳FJSP具有较强的搜索能力和竞争力.
英文摘要
      In this paper low carbon flexible job shop scheduling problem (FJSP) is considered. A new shuffled frog leaping algorithm (SFLA) is proposed to minimize total carbon emission, in which memory is used to store best solutions. Population division is done by using population and memory. Some new strategies such as cooperation of global search and local search are applied to realize the search in the memeplex. Population shuffling is deleted to simplify the algorithm. We compared hybrid genetic algorithm and teaching-learning-based optimization algorithm, which also considered the combination of local search and global search. Extensive experiments are conducted on a number of instances and result analyses show that SFLA has strong search ability and competitiveness for low carbon FJSP.