引用本文:杨建,原文宾,聂雨雯,柳张杰,韩华,董密.直流微电网分布式控制的时滞稳定化设计[J].控制理论与应用,2017,34(8):1074~1083.[点击复制]
YANG Jian,YUAN Wen-bin,NIE Yu-wen,LIU Zhang-jie,HAN Hua,DONG Mi.The Design of Delay Stability in DC Microgrid with Distributed Control[J].Control Theory and Technology,2017,34(8):1074~1083.[点击复制]
直流微电网分布式控制的时滞稳定化设计
The Design of Delay Stability in DC Microgrid with Distributed Control
摘要点击 3833  全文点击 1376  投稿时间:2016-10-25  修订日期:2017-05-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60795
  2017,34(8):1074-1083
中文关键词  直流微电网  分布式控制  全时滞稳定  时滞相关稳定  Razumikhin稳定性理论  线性矩阵不等式(LMI)
英文关键词  DC microgrids  distributed control  delay-independent stability  delay-dependent stability  Razumikhin stability theory  linear matrix inequality (LMI)
基金项目  国家自然科学基金项目(51677194), 国家高技术研究发展计划项目(“863”计划)(2015AA050604), 湖南省重点科技计划项目(2016GK2039)资助.
作者单位邮编
杨建 中南大学信息科学与工程学院 410083
原文宾 中南大学信息科学与工程学院 
聂雨雯 中南大学信息科学与工程学院 
柳张杰 中南大学信息科学与工程学院 
韩华 中南大学信息科学与工程学院 
董密* 中南大学信息科学与工程学院 410083
中文摘要
      直流微电网中,大部分控制器在设计时未考虑通信延时对系统性能的影响,这可能会导致控制器在实际应用中失效甚至影响系统的稳定性。本文基于一种分布式控制策略,建立了直流微电网系统的时滞模型,重点研究了通信延时对系统稳定性的影响。结合Razumikhin稳定性理论,提出了一种针对时变时滞系统的全时滞稳定性判据。为了更加适用于实际系统,在另一种全时滞稳定性判据的基础上,对系统时滞相关稳定性进行分析,得到保证系统稳定的延时上界,进而给出了一种确定控制参数范围的方法。与传统的将通信延时处理为一阶惯性环节的分析方法相比,基于时滞系统的分析方法更切合实际,为系统的稳定运行提供了一个更宽的时滞范围,提高了系统的可靠性。仿真和实验结果表明本文提出的控制参数设计方法能保证系统在最大延时下的稳定运行。
英文摘要
      The impact of communication delay on DC Microgrids performance has been neglected normally in most controller designs, which may cause system instability. The effect of communication delay on system stability is studied based on a distributed control strategy. Combined with Razumikhin stability theory, a novel delay-independent stability criterion for the system with time-varying delays is proposed Based on another delay-independent stability criterion, the delay-dependent stability of the system is analyzed for practical application, and the delay upper bound which can guarantee the system stability is given. Specifically, an approach which defines the feasible regions of control parameters is derived to guarantee the system stability under the condition of delay. Compared with the first-order inertia loops, this method provides a wider delay boundary, which makes the system safer, more reliable and stable. Finally, simulation and experimental results verify that the feasible regions of control parameters can guarantee the system stability under maximum delay.