引用本文:李光远,冯勇.微分代数系统结构化分析[J].控制理论与应用,2017,34(8):1019~1027.[点击复制]
LI Guang-yuan,FENG Yong.Structural analysis for differential algebraic systems[J].Control Theory and Technology,2017,34(8):1019~1027.[点击复制]
微分代数系统结构化分析
Structural analysis for differential algebraic systems
摘要点击 2486  全文点击 2384  投稿时间:2017-01-26  修订日期:2017-04-06
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70059
  2017,34(8):1019-1027
中文关键词  微分代数系统  结构化分析  初始相容性  加权二部图  算法
英文关键词  differential algebraic system  structural analysis  consistent initialization  weighted bipartite graph  algorithm
基金项目  国家“973”计划项目(NKBRPC–2011CB302402), 国家自然科学基金项目(61402537, 91118001)资助.
作者单位E-mail
李光远* 中科院成都计算机应用研究所 li_guang_yuan@sina.com 
冯勇 中国科学院 成都计算机应用研究所,  
中文摘要
      对工程和科学问题进行建模和仿真的时候, 人们常常很自然地会用微分代数系统对这些问题进行描述. 为 了检验微分代数系统的初始相容性并进行求解, 对微分代数系统进行结构化分析非常重要. 本文对经典的微分代数 系统结构化分析方法进行了深入的研究; 提出了一种新的结构化分析方法, 可以高效地对大规模、高阶高指标的微 分代数系统进行结构化分析, 并快速检验其初始相容性; 证明了该方法的终止性, 分析了其最坏时间复杂度. 该方法 的关键在于对最大加权二部子图的使用, 而最大加权二部子图则来源于原始系统的加权二部图. 实验结果显示, 该 方法能高效地完成对微分代数系统的结构化分析.
英文摘要
      It is natural to describe physical system with differential algebraic system when modeling and simulating many engineering and scientific problems. Structural analysis is very important for the consistent initialization of differential algebraic system and finally solving it. In this paper, we research the classical methods for structural analysis of differential algebraic systems; and then we propose a new and more time efficient method for structural analysis of large scale differential algebraic systems that have a high index and a high order, and this method can quickly verifies the consistent initialization of the differential algebraic system, find out which equations and how many times they need differentiating as well; we prove the termination of this new method and analyze the worst time complexity of it. The key to this proposed method is the use of maximal weighted bipartite sub-graphs, which are derived from the base of weighted bipartite graphs of the original system. Demonstration and testing show that this method is effective and time efficient for structural analysis of differential algebraic systems.