引用本文: | 姜浩楠,蔡远利.鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用[J].控制理论与应用,2018,35(2):129~136.[点击复制] |
JIANG Hao-nan,CAI Yuan-li.Robust Gaussian-sum ensemble Kalman filter and its application in bearings-only tracking[J].Control Theory and Technology,2018,35(2):129~136.[点击复制] |
|
鲁棒高斯和集合卡尔曼滤波及其在纯角度跟踪中的应用 |
Robust Gaussian-sum ensemble Kalman filter and its application in bearings-only tracking |
摘要点击 3222 全文点击 2255 投稿时间:2017-03-01 修订日期:2017-09-06 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.70116 |
2018,35(2):129-136 |
中文关键词 纯角度跟踪 异常值 非高斯噪声 集合卡尔曼滤波 高斯和 |
英文关键词 bearings-only tracking outliers non-Gaussian noise ensemble Kalman filter Gaussian-sum |
基金项目 国家自然科学基金项目(61202128), 陕西省自然科学基础研究计划项目(2017JQ6056)资助. |
|
中文摘要 |
针对纯角度目标跟踪中量测信息易受异常值和非高斯噪声干扰的问题, 提出了一种新的非线性滤波算法–
鲁棒高斯和集合卡尔曼滤波(robust Gaussian-sum ensemble Kalman filter, RGSEnKF)算法. 首先, 采用Huber技术重塑
集合卡尔曼滤波的量测更新过程, 能够有效地处理量测中的异常值. 随后, 将改进的集合卡尔曼滤波在高斯和框架
下进行扩展, 得到RGSEnKF算法, 可以进一步解决受非高斯噪声干扰的非线性系统的状态估计问题. 此外, 新算法
中包含距离参数化初始化策略和高斯分量融合策略. 前者是为了减小纯角度跟踪中距离信息不可观测的影响, 而后
者可以避免高斯分量数目随时间不断增长. 大量仿真结果验证了新算法的有效性和鲁棒性. |
英文摘要 |
In order to deal with the situation that measurements are easily contaminated by outliers and non-Gaussian
noise, a new nonlinear filtering algorithm called the robust Gaussian-sum ensemble Kalman filter (RGSEnKF) is proposed
for the bearings-only tracking problem. Firstly, the measurement update process of the ensemble Kalman filter is reformulated
by using Huber technique so that outliers can be dealt with efficiently. Further, the improved ensemble Kalman filter is
extended within a Gaussian-sum framework, the result is RGSEnKF algorithm which can handle the state estimation problem
of nonlinear system corrupted by non-Gaussian noise. Moreover, the new algorithm includes a range-parameterized
initialization strategy and a Gaussian merging strategy. The former strategy can reduce the effect of unobservability of
range in bearings-only tracking and the latter can prevent the number of Gaussian components from increasing over time.
Lots of simulation results validate the effectiveness and robustness of the new algorithm. |
|
|
|
|
|