引用本文:王洪涛,李霆,黄辉,贺跃帮,刘旭程.一种基于时–空–频联合选择与相关向量机的 运动想象脑电信号分析算法[J].控制理论与应用,2017,34(10):1403~1408.[点击复制]
WANG Hong-tao,LI Ting,HUANG Hui,HE Yue-bang,LIU Xu-cheng.A motor imagery analysis algorithm based on spatio-temporal-frequency joint selection and relevance vector machine[J].Control Theory and Technology,2017,34(10):1403~1408.[点击复制]
一种基于时–空–频联合选择与相关向量机的 运动想象脑电信号分析算法
A motor imagery analysis algorithm based on spatio-temporal-frequency joint selection and relevance vector machine
摘要点击 2594  全文点击 1406  投稿时间:2017-03-19  修订日期:2017-07-24
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70169
  2017,34(10):1403-1408
中文关键词  脑机接口  运动想象  共空域滤波  相关向量机
英文关键词  brain-computer interface  motor imagery  common spatial patten  relevance vector machine
基金项目  广东省科技发展专项资金(2017A010101034), 广东高校特色创新类项目(2016KTSCX141), 五邑大学博士启动项目, 江门市基础理论与科学研究 类科技计划项目(江科[2016]189号), 五邑大学青年基金项目(2013zk08), 国家留学基金项目([2016]5113)
作者单位E-mail
王洪涛* 五邑大学信息工程学院 nushongtaowang@qq.com 
李霆 五邑大学 信息工程学院  
黄辉 五邑大学 信息工程学院  
贺跃帮 五邑大学 信息工程学院  
刘旭程 五邑大学 信息工程学院  
中文摘要
      研究表明: 不同受试者由于个体差异, 会引起在执行相同运动想象任务时, 产生与受试者关联的特定脑电信号 特征, 这是设计脑机接口系统面临的一个实际问题. 为解决这个问题, 本文提出了一种基于时–空–频联合特征的提取方 法. 首先, 对原始118导联的EEG进行空间特征分析, 从中提取出与运动想象相关脑区对应的55导联EEG信号. 进一步, 在训练集上, 通过7–折交叉验证, 训练出与受试者匹配的时间窗和频带. 其次, 利用8个共空域滤波器进行特征提取. 最 后, 将获得基于样本的运动想象特征, 采用相关向量机进行分类. 仿真结果表明: 该算法在第3届脑机接口竞赛数据 集Data IVa分类上获得5位受试者平均分类精度为94.49%, 结果优于当年第1名94.17%. 此外, 与其他3种常用的方法比 较亦具有明显优势. 本文提出的基于样本的时–空–频特征提取方法和相关向量机的结合, 该算法整体性能优越, 为基于 运动想象的脑机接口在线系统设计提供了一种新方法.
英文摘要
      Convergent studies have reported inter-subject variability in EEG representation when subjects performed same cognitive tasks, yielding a significant drawback for developing a practical BCI system. In order to address this problem, we have introduced a subject-dependent specio-temporal-frequecy joint feature selection method. Specifically, we first selected 55-channel EEG signals among the original 118-channel recordings according to the close relevance of the signals in motor-related areas. A 7-fold cross validation approach was applied to select the optimal time-window and frequency bands, which match individual subject based upon the training data set. Then motor imagery related features were determined via the common spatial pattern method. The obtained subject-dependent features were feeded to a relevance vector machine for motor imagery classification. The experiment results show that our framework demonstrated superior performance as showing in the higher classification accuracy (94.49% in comparison with the highest classification accuracy 94.17%) in the competition III. Compared with the other three existing methods, our method also has obvious advantages. In summary, we provided feasible framework to account for inter-subject variability, which would be a new method for the designing of the online motor imagery brain computer interface system.