引用本文:郭云飞,潘金星,才智.基于多帧杂波稀疏度估计的无源协同定位[J].控制理论与应用,2018,35(7):981~987.[点击复制]
GUO Yun-fei,PAN Jin-xing,CAI Zhi.Passive coherent location with multi-scan clutter sparsity estimation[J].Control Theory and Technology,2018,35(7):981~987.[点击复制]
基于多帧杂波稀疏度估计的无源协同定位
Passive coherent location with multi-scan clutter sparsity estimation
摘要点击 2340  全文点击 1312  投稿时间:2017-06-07  修订日期:2017-12-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70386
  2018,35(7):981-987
中文关键词  无源协同定位  未知杂波密度  杂波稀疏度估计  概率假设密度  高斯混合
英文关键词  passive coherent location  unknown clutter density  clutter sparsity estimation  probability hypothesis density  Gaussian mixture
基金项目  国家自然科学基金项目(61573123)资助.
作者单位E-mail
郭云飞* 杭州电子科技大学 gyf@hdu.edu.cn 
潘金星 杭州电子科技大学  
才智 中国电子科技集团第二十八研究所  
中文摘要
      针对杂波密度未知时的多目标无源协同定位问题, 提出一种基于多帧杂波稀疏度估计(multi-scan clutter sparsity estimation, MCSE)和高斯混合概率假设密度(Gaussian mixture probability hypothesis density, GMPHD)的多目标无源协同定位算法. 首先, 构建高斯混合后验强度和杂波密度估计之间的反馈模型, 利用门限技术在线剔除潜在的目标测量, 以减少目标测量对杂波密度估计的干扰. 其次, 基于多帧杂波稀疏度估计, 实现非均匀分布的杂波密度的在线估计, 进一步提高杂波密度未知时的多目标跟踪性能. 仿真验证了所提算法的有效性.
英文摘要
      In order to solve the problem of multi-target passive coherent location in clutter with unknown density, a multi-scan clutter sparsity estimation and Gaussian mixture probability hypothesis density (MCSE-GMPHD) based multi-target passive coherent location algorithm is proposed. First, a feedback model that connecting the Gaussian mixture posteriori intensity with the clutter density estimation is constructed. The potential target-originated measurements are eliminated by a designed threshold, which helps to reduce the effect on the clutter density estimation of the target-originated measurements. Second, a multi-scan clutter sparsity estimator is proposed to estimate the nonuniform clutter density online, that can improve the tracking performance with unknown clutter density. Simulation results verify the effectiveness of the proposed algorithm.