引用本文: | 王春晓,武玉强.控制方向未知的全状态约束非线性系统的鲁棒自适应跟踪控制[J].控制理论与应用,2018,35(2):153~161.[点击复制] |
WANG Chun-xiao,WU Yu-qiang.Robust adaptive tracking control for full state-constrained nonlinear systems with unknown control direction[J].Control Theory and Technology,2018,35(2):153~161.[点击复制] |
|
控制方向未知的全状态约束非线性系统的鲁棒自适应跟踪控制 |
Robust adaptive tracking control for full state-constrained nonlinear systems with unknown control direction |
摘要点击 3699 全文点击 2378 投稿时间:2017-06-08 修订日期:2017-11-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2017.70389 |
2018,35(2):153-161 |
中文关键词 障碍Lyapunov函数 Nussbaum增益控制 未知控制方向 全状态约束 自适应控制 |
英文关键词 barrier Lyapunov function Nussbaum gain control unknown control direction full state constraints adaptive control |
基金项目 国家自然科学基金项目(61673243, 61273091, 61303198), 山东省泰山学者项目(TS20120529), 中国教育部博士后基金项目(20123705110002)资 助. |
|
中文摘要 |
针对一类控制方向未知的含有时变不确定参数和未知时变有界扰动的全状态约束非线性系统, 本文提出
了一种基于障碍Lyapunov函数的反步自适应控制方法. 障碍Lyapunov 函数保证了系统状态在运行过程中始终保持
在约束区间内; Nussbaum型函数的引入解决了系统控制方向未知的问题; 光滑投影算法确保了不确定时变参数的
有界性. 障碍Lyapunov函数、Nussbaum型函数及光滑投影算法与反步自适应方法的有效结合首次解决了控制方向
未知的全状态约束非线性系统的跟踪控制问题. 所设计的自适应鲁棒控制器能在满足状态约束的前提下确保闭环
系统的所有信号有界. 通过恰当地选取设计参数, 系统的跟踪误差将收敛于0的任意小的邻域内. 仿真结果表明了
控制方案的可行性. |
英文摘要 |
To consider a class of full state-constrained nonlinear systems with completely unknown control coefficients,
uncertain time-varying parameters and disturbances, a Barrier Lyapunov function (BLF) based adaptive robust control
design method is proposed. BLFs are to ensure that the full state constraints be not violated, the unknown control direction is
resolved effectively by the Nussbaum gain function and the boundedness of uncertain time-varying parameters is guaranteed
by using the continuous projection algorithm. It is the first time that the BLF, Nussbaum gain function and continuous
projection algorithm effectively combine with backstepping adaptive control to solve the tracking control problem for full
state-constrained nonlinear system with unknown control direction. As shown as the control result, all the closed loop
signals are bounded and full state constraints are not violated. Moreover the system output tracking error will converge to
a bounded compact set of zero through select proper parameters. At last, The effectiveness of the proposed control scheme
is further verified with a numerical example. |