引用本文:高学金,杨彦霞,王普,李晓理,常鹏,齐咏生.基于扩展核熵负载矩阵的发酵过程故障监测[J].控制理论与应用,2018,35(6):813~821.[点击复制]
GAO Xue-jin,YANG Yan-xia,WANG Pu,LI Xiao-li,CHANG Peng,QI Yong-sheng.Fault monitoring of fermentation process based on extended kernel entropy load matrix[J].Control Theory and Technology,2018,35(6):813~821.[点击复制]
基于扩展核熵负载矩阵的发酵过程故障监测
Fault monitoring of fermentation process based on extended kernel entropy load matrix
摘要点击 2900  全文点击 1115  投稿时间:2017-08-01  修订日期:2018-05-11
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.70521
  2018,35(6):813-821
中文关键词  过程监测  主元分析  多阶段  发酵过程
英文关键词  process monitoring  principal component analysis  multistage  fermentation process
基金项目  国家自然科学基金项目(61640312, 61473034, 61673053, 61174109), 北京市自然科学基金项目(4172007), 北京科技新星计划交叉学科合作项目 (Z161100004916041)资助.
作者单位邮编
高学金 北京工业大学 100124
杨彦霞 北京工业大学 
王普 北京工业大学 
李晓理* 北京工业大学 100124
常鹏 北京工业大学 
齐咏生 内蒙古工业大学 
中文摘要
      为有效降低多阶段发酵过程硬分类缺陷而导致的误报和漏报率, 本文提出了一种基于扩展核熵负载矩阵的阶 段划分策略. 首先, 将发酵过程的三维训练数据按批次方向展开成二维数据矩阵, 对每个时间片矩阵进行核熵成分分 析(kernel entropy component analysis, KECA)得到其主元和负载矩阵, 根据所得主元个数实现操作阶段的第1步划分; 之后将时间片矩阵添加到核熵负载矩阵当中得到扩展核熵负载矩阵, 计算各扩展负载矩阵间的相似度, 并用模糊C–均 值方法对其进行第二次阶段划分. 通过增加对体现生产过程改变的时间指标的考虑, 有效克服了硬化分的不足, 避免了 跳变点错分的情况. 最终将整个生产操作过程划分为不同的稳定阶段和过渡阶段, 并在划分的每一阶段中分别建 立KECA监测模型; 最后利用青霉素发酵仿真平台和大肠杆菌生产白介素–2数据进行实验. 实验结果表明该方法不但可 以准确地对生产过程进行阶段划分、降低误报率, 而且可以使生产过程故障监测的时间大大提前.
英文摘要
      Hard classification for multistage fermentation process and cause of the defects of false alarm and alarm failure, in order to effectively reduce the omission and the rate of false positives, this paper proposes a strategy based on extended nuclear entropy load matrix. First, the three-mention training data array of fermentation process is unfolded in batch ways, resulting in two-dimension forms. Then, kernel entropy component analysis (KECA) was done for each time slice matrix to obtain its load matrix. After that, time slice matrix was added to the nuclear load matrix of entropy, and the change of the nuclear load matrix of entropy was utilized to describe the changes of batch processes.The KECA monitoring model was established at each stage of the division after the stage of nuclear load matrix of entropy was determined by FCM algorithm. At last, the effectiveness and utility of the proposed method were validated through the simulation of fed-batch penicillin and E. coli production of interleukin-2. Results showed, the proposed method could not only divide the stage and reduce the false alarm precisely, but also detect the production difficulty more advance.