引用本文:萧德云,杨帆,张益农,耿立辉.UD分解与偏差补偿结合用于变量带误差模型辨识[J].控制理论与应用,2018,35(7):949~955.[点击复制]
XIAO De-yun,YANG Fan,ZHANG Yi-nong,GENG Li-hui.Combination of UD factorization and bias compensation for errors-in-variables model identification[J].Control Theory and Technology,2018,35(7):949~955.[点击复制]
UD分解与偏差补偿结合用于变量带误差模型辨识
Combination of UD factorization and bias compensation for errors-in-variables model identification
摘要点击 3293  全文点击 1192  投稿时间:2017-08-01  修订日期:2018-05-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70545
  2018,35(7):949-955
中文关键词  系统辨识  EIV模型  最小二乘法  偏差补偿  参数估计
英文关键词  system identification  EIV model  least squares method  bias compensation  parameter estimation
基金项目  国家自然科学基金项目(61203119), 清华大学自主科研计划, 天津职业技术师范大学人才项目(RC17–01, RC14–48)资助.
作者单位E-mail
萧德云* 清华大学 自动化系 xiaody@tsinghua.edu.cn 
杨帆 清华大学 自动化系  
张益农 北京联合大学城市轨道交通与物流学院  
耿立辉 天津职业技术师范大学 自动化与电气工程学院  
中文摘要
      本文提出一种基于UD (upper-diagonal)分解与偏差补偿结合的辨识方法, 用于变量带误差(errors-in-variables, EIV)模型辨识. 考虑单输入单输出(single input and single output, SISO)线性动态系统, 当输入和输出含有零均值、方差 未知的高斯测量白噪声时, 该类系统的模型参数估计是一种典型的EIV模型辨识问题. 为了获得这种EIV模型参数的无 偏估计, 本文先推导出最小二乘模型参数估计偏差量与输入输出噪声方差以及最小二乘损失函数与输入输出噪声方差 的关系, 然后采用UD分解方法递推获得模型参数估计值, 再利用输入输出噪声方差估计值补偿模型参数估计偏差, 以 此获得模型参数的无偏估计. 本文还讨论了算法实现过程中遇到的一些问题及修补方法, 并通过仿真例验证了所提辨识 方法的有效性.
英文摘要
      In this paper, an identification method based on the combination of upper-diagonal (UD) factorization and deviation compensation is proposed for the identification of errors-in-variables (EIV) model. By considering a single input and single output (SISO) linear dynamic system, whose input and output are corrupted by Gaussian white measurement noises with zero means and unknown variances, the model parameter estimation for such system is a typical problem of EIV model identification. In order to obtain an unbiased parameter estimation of the EIV model, the relationships are firstly derived not only between the bias amounts of the least squares model parameter estimates and the variances of input and output noises but also between the least squares loss function and the variances of input and output noises, and then the UD factorization method is adopted to recursively obtain model parameter estimates and the estimated variances of input and output noises are further utilized to compensate for the deviations of the model parameter estimates, thus resulting in the unbiased parameter estimates of the EIV model. In this paper, some issues and compensation schemes encountered in the implementation of our algorithm are also discussed. Finally, the effectiveness of the proposed identification method is verified by a simulation example.