引用本文:阳光,韩飞,段广仁,王兆龙,孙炳磊,彭杨.空间翻滚目标捕获的双滑模面控制律与地面微重力试验[J].控制理论与应用,2018,35(10):1436~1446.[点击复制]
YANG Guang,HAN Fei,DUAN Guangren,WANG Zhao-long,SUN Bing-lei,PENG Yang.Dual sliding-mode surface control law and ground micro-gravity semi-physical test for capturing tumbling target in space[J].Control Theory and Technology,2018,35(10):1436~1446.[点击复制]
空间翻滚目标捕获的双滑模面控制律与地面微重力试验
Dual sliding-mode surface control law and ground micro-gravity semi-physical test for capturing tumbling target in space
摘要点击 2624  全文点击 1080  投稿时间:2017-11-30  修订日期:2018-06-05
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.70891
  2018,35(10):1436-1446
中文关键词  空间翻滚目标, 逼近与捕获, 滑模控制, 地面微重力试验
英文关键词  tumbling target in space, approaching and capturing, sliding-mode control, ground micro-gravity test
基金项目  国家自然科学基金重点项目,国家自然科学基金
作者单位E-mail
阳光 上海市空间智能控制技术重点实验室 iamsunlight@163.com 
韩飞* 哈尔滨工业大学航天学院 shanquan_5836@163.com 
段广仁 哈尔滨工业大学航天学院  
王兆龙 上海市空间智能控制技术重点实验室  
孙炳磊 上海市空间智能控制技术重点实验室  
彭杨 上海市空间智能控制技术重点实验室  
中文摘要
      本文研究了空间翻滚目标捕获任务中的相对姿轨耦合控制问题。为了提高系统在有界干扰、测量误差、控制受限、参数不确定等因素影响下的控制性能,设计了双滑模面姿轨耦合控制律,并证明了该控制律作用下闭环系统的稳定性。通过数学仿真与传统单滑模面控制律进行了对比分析,结果表明双滑模面控制律的能够显著减小稳态偏差和噪声。进一步,构建了地面微重力半物理试验系统,设计了轨道面内对翻滚目标逼近与跟踪的任务场景,通过半物理试验结果验证了双滑模面控制律在姿轨控全系统实时闭环、微重力动力学条件下的有效性。
英文摘要
      The relative attitude and orbit coupled control problem for capturing tumbling target in space is studied in this paper. To improve the control performance of the system impacted by bounded disturbance, measurement errors, limited control input, parameter uncertainty and so on, a dual sliding-mode surface control (DSMSC) method is designed, with the stability of the closed-loop system also proved. Numerical simulations are carried out to compare the performances of the single sliding-mode surface control (SSMSC) law and the DSMSC. The DSMSC is indicated to remarkably lower the steady statue control bias and noise. Furthermore, a set of ground micro-gravity semi-physical verification system is established, and a mission scenario is designed with the relative motion between the chaser and target constrained in the orbit plane of the target. Then, using this semi-physical verification system, the efficiency of the DSMSC is verified in the real-time closed-loop guidance navigation and control system under ground-simulated micro-gravity dynamics.