引用本文:储银雪,陆智俊,裘旭益,吴奇.深度稀疏自编码网络识别飞行员疲劳状态[J].控制理论与应用,2019,36(6):850~857.[点击复制]
CHU Yin-xue,LU Zhi-jun,QIU Xu-yi,WU Qi.Using deep sparse auto-encoding network to identify pilots’ fatigue status[J].Control Theory and Technology,2019,36(6):850~857.[点击复制]
深度稀疏自编码网络识别飞行员疲劳状态
Using deep sparse auto-encoding network to identify pilots’ fatigue status
摘要点击 2862  全文点击 1591  投稿时间:2018-01-04  修订日期:2018-08-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.80011
  2019,36(6):850-857
中文关键词  飞行员疲劳  脑电信号  深度稀疏自编码网络  Softmax分类器
英文关键词  pilots’ fatigue  electroencephalogram signals  deep sparse auto-encoding network  Softmax classifier
基金项目  国家自然科学基金(61671293,61473158,51705242), 上海浦江人才计划(15PJ1404300)
作者单位E-mail
储银雪* 上海交通大学 chuyinxue@sjtu.edu.cn 
陆智俊 上海航天八院所  
裘旭益 中国航空无线电电子研究所  
吴奇 上海交通大学  
中文摘要
      针对飞行员疲劳状态识别的复杂性和准确性,提出一种基于脑电信号的深度学习模型。首先对飞行员脑电信号进行滤波分解,提取delta波(0.5~4Hz)、theta波(5~8Hz)、alpha波(7~14Hz)、beta波(14~30Hz),提取基于脑电节律波的频域特征,作为识别模型的输入向量。其次,将一种基于深度稀疏自编码网络-Softmax模型用于飞行员疲劳状态识别,并与单层的稀疏自编码网络-softmax和传统方法PCA-Softmax模型识别结果进行比较。最后,实验结果显示,针对飞行员疲劳状态识别问题,所建立的学习模型具有很好的分类识别效果,具有较好的工程推广价值。
英文摘要
      Aiming at the complexity and accuracy of recognition of pilot’s fatigue states, a deep learning model based on electroencephalogram signals was proposed. Firstly, EEG signals were filtered and decomposed, and the delta wave (0.5 ~ 4Hz), theta wave (5 ~ 8Hz) ,alpha wave (7 ~ 14Hz) and beta wave (14 ~ 30Hz) were extracted and the frequency domain features of four rhythms were also extracted as the input vectors. Secondly, a deep sparse auto-encoding network-Softmax model was proposed to recognize pilots’ fatigue states. Its recognition results were compared with those of single layer sparse auto-encoding network-softmax and traditional PCA-Softmax model. Finally, the experimental results showed that the learning model has a good classification for the recognition of pilots'' fatigue states, and has a good value for engineering promotion.