引用本文: | 吴受章.最优控制的计算原理: 评论最小值原理[J].控制理论与应用,2019,36(8):1189~1196.[点击复制] |
WU Shou-zhang.The computational principle of optimal control: comments on minimum principle[J].Control Theory and Technology,2019,36(8):1189~1196.[点击复制] |
|
最优控制的计算原理: 评论最小值原理 |
The computational principle of optimal control: comments on minimum principle |
摘要点击 4134 全文点击 1839 投稿时间:2018-04-11 修订日期:2018-10-12 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2018.80254 |
2019,36(8):1189-1196 |
中文关键词 最优控制,计算原理,数值优化,最小值原理,凸性 |
英文关键词 optimal control, computational principle, numerical optimization, minimum principle, convexsity |
基金项目 |
|
中文摘要 |
提出连续最优控制计算原理和离散最优控制计算原理,两者都可用于最优控制的数值优化。Pontryagin最小值原理和离散最小值原理,由于其含有的信息不完整,形式特殊,所以都不能用于最优控制的数值优化。此外,Pontryagin最小值原理和离散最小值原理分别为连续最优控制计算原理和离散最优控制计算原理的特殊情况。 |
英文摘要 |
The computational principles of continuous optimal control and discrete optimal control are proposed. Both of them can be used for numerical optimization of optimal control. Pontryagin’s minimum principle and discrete minimum principle can not be used for numerical optimization of optimal control because of their incomplete information and special form. Furthermore, Pontryagin’s minimum principle and discrete minimum principle are the special cases of continuous computational principle and discrete computational principle of optimal control respectively. |
|
|
|
|
|