引用本文: | 赵欣怡,宗群,张睿隆,田栢苓,张秀云,冯聪.类脑智能技术在无人系统上的应用[J].控制理论与应用,2019,36(1):1~12.[点击复制] |
ZHAO Xin-yi,ZONG Qun,ZHANG Rui-long,TIAN Bai-ling,ZHANG Xiu-yun,FENG Cong.Application of brain-inspired intelligence technology in unmanned vehicles[J].Control Theory and Technology,2019,36(1):1~12.[点击复制] |
|
类脑智能技术在无人系统上的应用 |
Application of brain-inspired intelligence technology in unmanned vehicles |
摘要点击 4340 全文点击 3090 投稿时间:2018-06-07 修订日期:2018-12-25 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2018.80418 |
2019,36(1):1-12 |
中文关键词 类脑智能 无人系统 智能自主 |
英文关键词 brain-inspired intelligent unmanned vehicles intelligent autonomous |
基金项目 国家自然科学基金(61673294, 61773278, 61573060) |
|
中文摘要 |
随着人工智能与脑科学等前沿技术的迅速发展, 无人系统智能化研究正逐渐成为当今世界强国重点关注
的战略发展方向, 研究与之相关的科学问题具有前瞻性、战略性和带动性. 文章首先分析了无人系统的发展需求,
提出了面向需求的若干关键问题, 包括复杂环境与态势信息的感知与认知问题、整体效能最优的分布式任务决策
问题、面向任务需求的路径实时规划问题、考虑高不确定环境的自学习控制问题、应对非预期情况的故障诊断及容
错问题以及基于人机接口的人机交互问题; 随后, 系统阐述了类脑智能技术在解决这些问题上的国内外研究现状;
最后, 论述了无人系统类脑智能化发展中依然存在的问题及未来发展趋势. |
英文摘要 |
With the rapid advancement of artificial intelligence and brain science technology, intelligent unmanned
vehicles is becoming the strategic development direction for world powers today, and the research of related scientific
problems are forward-looking, strategic and strong in promotion. This paper first analyzes the development requirements
of unmanned vehicles, based on which several requirement-oriented key problems is put forward, including the perception
and cognition problem of the complex environment and situation, the distributed task decision problem subject to optimal
overall effectiveness, the real-time path planning problem satisfying task requirement, the self-learning control problem
under high uncertainty environment, the fault diagnosis and fault tolerance problem in response to unexpected situation and
the human-machine interaction problem based on human-machine interaction equipment. Then, the current research status
of brain intelligent technology in solving these problems at home and abroad is discussed. Finally, this paper summarizes
the existing problems and presents the prospects in the development of intelligent unmanned vehicles. |
|
|
|
|
|