引用本文:刘盛,陈一彬,戴丰绩,柯正昊,陈胜勇.空地正交视角下的多机器人协同定位及融合建图[J].控制理论与应用,2018,35(12):1779~1787.[点击复制]
LIU Sheng,CHEN Yi-bin,DAI Feng-ji,KE Zheng-hao,CHEN Sheng-yong.Multi-robot cooperative simultaneous localization and mapping in orthogonal angle of view[J].Control Theory and Technology,2018,35(12):1779~1787.[点击复制]
空地正交视角下的多机器人协同定位及融合建图
Multi-robot cooperative simultaneous localization and mapping in orthogonal angle of view
摘要点击 3578  全文点击 881  投稿时间:2018-06-15  修订日期:2018-09-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.80449
  2018,35(12):1779-1787
中文关键词  多机器人  无人机  同时定位与建图  空地协同
英文关键词  multi-robot  unmanned aerial vehicles  simultaneous localization and mapping  air-ground cooperation
基金项目  
作者单位E-mail
刘盛* 浙江工业大学 edliu@zjut.edu.cn 
陈一彬 浙江工业大学  
戴丰绩 浙江工业大学  
柯正昊 浙江工业大学  
陈胜勇 浙江工业大学  
中文摘要
      针对单一机器人在复杂场景下进行同步定位与建图存在的视角局限等问题, 提出了一种空地正交视角下的空中无人机与地面机器人协同定位与融合建图方法. 鉴于无人机的空中视角与地面机器人视角属于正交关系, 该方法主要思想是解决空地正交视角的坐标系转换问题. 首先, 设计了一种空中无人机和地面机器人协同定位与建图的框架, 通过无人机提供的全局俯视图像与地面机器人的局部平视图像获得全面丰富的场景信息. 在此基础上, 通过融合惯性测量单元和图像信息修正偏移并优化轨迹, 利用地面机器人上带有尺度信息的视觉标识, 获得坐标系转换矩阵以融合地图. 最后真实场景实验验证了该方法具有有效性,是空地协同多机器人SLAM领域中值得参考的方法.
英文摘要
      In a complex scenario, the view of a single robot for simultaneous localization and mapping(SLAM) is limited. To deal with this problem, this paper presents a multi-robot cooperative SLAM method in orthogonal angle of view. Our work is to merge the coordinate systems in the unmanned aerial vehicles (UAV) and unmanned ground vehicles (UGV). A framework of cooperative SLAM is designed. Which can obtain comprehensive and rich scene information through the global perspective and local horizontal angle of view. After combining the inertial measurement unit (IMU) and specific tag feature , the abnormal offset and the trajectory can be optimized. By using the visual tag on the UGV, the UAV can obtain the scale information and relative pose transformation matrix to fuse the map. Finally, the multiple real scene experiments verify that the method is effective. It provides a theoretical reference for multi-robot air-ground cooperative SLAM research.