引用本文: | 张凯,刘华平,邓晓燕,马晓健,张新钰.面向室外移动机器人的雷达-图像跨模态检索[J].控制理论与应用,2018,35(12):1759~1764.[点击复制] |
ZHANG Kai,LIU Hua-ping,DENG Xiao-yan,MA Xiao-jian,ZHANG Xin-yu.Radar-image cross-modal retrieval for outdoor mobile robots[J].Control Theory and Technology,2018,35(12):1759~1764.[点击复制] |
|
面向室外移动机器人的雷达-图像跨模态检索 |
Radar-image cross-modal retrieval for outdoor mobile robots |
摘要点击 2328 全文点击 846 投稿时间:2018-06-29 修订日期:2018-12-10 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2018.80485 |
2018,35(12):1759-1764 |
中文关键词 移动机器人 点云 图像 特征提取 深度学习 聚类典型相关分析 |
英文关键词 mobile robots point clouds image feature extraction deep learning cluster-canonical correlation analysis |
基金项目 国家自然科学基金; 北京市科技计划项目;河北省研究生创新资助项目. |
|
中文摘要 |
移动机器人主要依靠激光雷达采集的点云和摄像机采集的图像信息来感知周围环境. 在极端天气或夜晚的情况下, 摄像机采集图像会受到极大干扰; 本文基于聚类典型相关分析(cluster-CCA)提出一种面向室外移动机器人的雷达图像跨模态检索技术, 首先利用深度学习网络提取点云和图像的特征, 然后使用聚类典型相关分析将两种模态的特征映射到子空间, 最后计算欧氏距离进行检索, 可以从图像数据库中检索得出与点云最相似的图像文件. 本文所提出的方法在KITTI 数据集上进行了验证, 实现了从点云到图像的跨模态检索, 结果验证了cluster-CCA在室外移动机器人雷达图像检索方面应用的有效性. |
英文摘要 |
Mobile robots mainly rely on point clouds and image information collected by laser radar and cameras to sense the surrounding environment. In extreme weather or at night, the camera captures images will be greatly disturbed; this paper proposes a radar image cross-modal retrieval technique for outdoor mobile robots based on cluster-canonical correlation analysis (cluster-CCA). Firstly, deep learning networks are used to extract the characteristics of the point cloud and the image, then using clustering canonical correlation analysis to map the features of the two modes to the subspace, and finally calculate the Euclidean distance to retrieve and get images, and the image files most similar to the point cloud can be obtained from the image database. The method proposed in this paper is tested on the KITTI data set, and achieves cross-modal retrieval from point cloud to image. The result validates the effectiveness of cluster-CCA in radar image retrieval for outdoor mobile robots. |
|
|
|
|
|