引用本文: | 刘珊,黎善斌,胥布工.混合攻击下时变信息物理系统的有限时域H∞控制[J].控制理论与应用,2020,37(2):331~339.[点击复制] |
LIU Shan,LI Shan-bin,XU Bu-gong.Finite horizon H∞ control for time-varying cyber-physical system under hybrid attacks[J].Control Theory and Technology,2020,37(2):331~339.[点击复制] |
|
混合攻击下时变信息物理系统的有限时域H∞控制 |
Finite horizon H∞ control for time-varying cyber-physical system under hybrid attacks |
摘要点击 2381 全文点击 1059 投稿时间:2018-09-13 修订日期:2019-05-16 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.80703 |
2020,37(2):331-339 |
中文关键词 信息物理系统 混合攻击 时变系统 H∞控制 递推黎卡提差分方程 |
英文关键词 cyber-physical system hybrid attacks time-varying systems H∞ control recursive Riccati difference equations |
基金项目 国家自然科学基金广东省联合基金重点项目(U1401253), 中央高校基本科研专项资金(2015ZZ099). |
|
中文摘要 |
本文讨论了一类线性时变“信息物理系统 (CPS)”在有限时域内受到混合攻击的H∞控制问题. 上述提到的混合攻击, 包括对传感器和控制器之间通信通道发起的“拒绝服务 (DoS)”攻击和对传感器和执行器发起的“数据注入 (FDI)”攻击, 其目的在于破坏测量数据和控制数据, 从而危及闭环系统的功能. 本文的目的在于研究攻击注入信号和被控输出的关系, 来设计控制器增益以使闭环系统在有限时域内具有H∞性能; 与此同时, 减少最坏情况下攻击输入信号对线性二次性能的影响. 为了解决以上问题, 本文用了随机分析方法和配方法来建立所需的控制器存在的充分条件, 并且通过求解一些设定条件下的两个耦合的倒向递推“黎卡提差分方程(RDEs)”, 提出了一个有限时域控制器设计算法. 最后, 本文给出了数值仿真和实验结果, 来证明该方法的有效性. |
英文摘要 |
In this paper, the H∞ control problem for a class of linear time-varying cyber-physical system (CPS) under hybrid attacks in a finite horizon is considered. The hybrid attacks, including denial of service (DoS) attacks on sensor-to-controller communication channels and false data injection (FDI) attacks on sensors and actuators, aim to destroy the measurement data and control data in order to endanger the functionality of the closed-loop system. The purpose of this paper is to study the relationship between the attack injected signals and the controlled output, and to design the controller gains so that the H∞ performance of the closed-loop system is guaranteed over a given finite horizon, meanwhile, the impact of attack signals in the worst case on the linear quadratic performance can be reduced. In order to solve the above problems, both the methods of stochastic analysis and completing squares are utilized to establish the sufficient conditions for the existence of the desired controller, and a finite-horizon controller design algorithm is presented by solving two coupled backward recursive Riccati difference equations (RDEs) subject to some scheduled conditions. At last, the numerical simulation and experimental results are given to demonstrate the efficacy of the proposed approach. |
|
|
|
|
|