引用本文:杜肖丰,曾喆昭,程婷,程启芝,王风琴.陀螺仪系统同步控制的参数自适应滑模控制[J].控制理论与应用,2020,37(4):801~808.[点击复制]
DU Xiao-feng,ZENG Zhe-zhao,CHENG Ting,CHENG Qi-zhi,WANG Feng-qin.Parameter adaptive sliding mode control for synchronous control of gyroscope system[J].Control Theory and Technology,2020,37(4):801~808.[点击复制]
陀螺仪系统同步控制的参数自适应滑模控制
Parameter adaptive sliding mode control for synchronous control of gyroscope system
摘要点击 1979  全文点击 819  投稿时间:2018-11-06  修订日期:2019-09-11
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.80870
  2020,37(4):801-808
中文关键词  陀螺仪混沌同步  参数自适应  滑模控制  时域及复频域分析  全局稳定性
英文关键词  gyroscopic chaos synchronization  parameter adaptive  sliding mode control  time domain and complex frequency domain analysis  global stability
基金项目  国家自然科学基金项目(61040049), 湖南省教育厅重点项目(17A006)
作者单位E-mail
杜肖丰* 长沙理工大学 1270806160@qq.com 
曾喆昭 长沙理工大学  
程婷 长沙理工大学  
程启芝 长沙理工大学  
王风琴 长沙理工大学  
中文摘要
      针对陀螺仪混沌同步问题, 提出了一种参数自适应滑模控制方法,并给出参数自适应律. 参数自适应滑模控制完全避免了滑模面因符号函数引起的高频切换,有效消除了现有滑模控制存在的高频抖振现象. 该方法计算量小且不依赖被控混沌系统的数学模型,可以快速跟踪主混沌系统. 时域及复频域理论分析和仿真实验均表明了参数自适应滑模控制方法具有全局渐近稳定性能. 研究结果表明,本文提出的控制方法不仅具有快的响应速度、高的控制精度、良好的抗扰动鲁棒性等特点, 在控制工程领域具有重要的理论意义和应用价值.
英文摘要
      A parameter adaptive sliding mode control method and the parameter adaptive law are given aiming at the gyroscopic chaos synchronization. The parameter adaptive sliding mode control has completely avoided the high frequency switching caused by the symbolic function of the sliding mode surface and effectively eliminated the high frequency chattering in the existing sliding mode control. This method features a small calculation amount and can track the main chaotic system quickly without depending on the mathematical model of the controlled chaotic system. The analysis and simulation experiments based on the time and complex frequency domains both show that the parameter adaptive sliding mode control method is characterized by global asymptotic stability. The research results indicate that the control method proposed in this paper not only features fast response speed, high control accuracy and good anti-disturbance robustness, Therefore, it has important theoretical significance and application value in the field of control engineering.