引用本文: | 赵东亚,崔文豪,严星刚.轮式移动机器人瞬态模型鲁棒自适应同步终端滑模编队控制[J].控制理论与应用,2020,37(2):423~430.[点击复制] |
ZHAO Dong-ya,CUI Wen-hao,YAN Xing-gang.Robust adaptive synchronized formation control for the transient model of wheeled mobile robots with terminal sliding-mode[J].Control Theory and Technology,2020,37(2):423~430.[点击复制] |
|
轮式移动机器人瞬态模型鲁棒自适应同步终端滑模编队控制 |
Robust adaptive synchronized formation control for the transient model of wheeled mobile robots with terminal sliding-mode |
摘要点击 2521 全文点击 1050 投稿时间:2018-11-27 修订日期:2019-05-02 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.80931 |
2020,37(2):423-430 |
中文关键词 运动学瞬态模型 同步控制 滑模控制 自适应控制系统 图论 |
英文关键词 Kinematic transient model Synchronized control Sliding mode control Adaptive control systems Graph theory |
基金项目 国家自然科学基金 |
|
中文摘要 |
在轮式移动机器人协同编队问题中, 如何保证移动机器人在追踪自身期望轨迹的同时, 又能实现与其他机器人运动同步的 问题对控制算法的设计提出了更高的要求. 本文提出一种基于图论的鲁棒自适应同步终端滑模控制算法来解决这一问题. 首先介绍了轮式移动机器人非线性运动学瞬态模型, 该模型避免了一般运动学模型多输入耦合互相干扰的问题. 然后根据交叉耦合误差设计同步控制算法实现运动同步, 通过鲁棒控制对系统外部干扰进行抑制, 自适应律保证切换增益实时调节. 运用Lyapunov 方法进行了稳定性分析, 证明了系统追踪误差的收敛性. 最后通过MATLAB 仿真验证了所设计算法的有效性. |
英文摘要 |
In the cooperative formation of wheeled mobile robots, the problem how to guarantee that mobile robots can track their own trajectories while synchronizing motions with others puts forward higher requirements on the design of control algorithms. A robust adaptive synchronized control with terminal sliding mode based on the algebraic graph theory is developed to solve this problem. Firstly, the nonlinear kinematics transient model of wheeled mobile robot is introduced. This model avoids the problem of multi-input coupling mutual interference in general kinematics model. Then, the synchronized control algorithm is designed according to the cross-coupling errors to realize the motion synchronization, and the external disturbance of the system is suppressed by the robust control. The adaptive law ensures the real-time adjustment of the switching gain. The stability analysis is carried out by using the Lyapunov method, which proves the convergence of the system tracking errors. Finally, the effectiveness of the designed algorithm is verified by Matlab simulation. |