引用本文: | 庄波,崔宝同,陈娟.一类耦合分数阶反应–扩散系统的边界控制[J].控制理论与应用,2020,37(3):592~602.[点击复制] |
ZHUANG Bo,CUI Bao-tong,CHEN Juan.Boundary control for a class of coupled fractional reaction-diffusion systems[J].Control Theory and Technology,2020,37(3):592~602.[点击复制] |
|
一类耦合分数阶反应–扩散系统的边界控制 |
Boundary control for a class of coupled fractional reaction-diffusion systems |
摘要点击 2318 全文点击 1224 投稿时间:2019-01-25 修订日期:2019-07-22 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90061 |
2020,37(3):592-602 |
中文关键词 边界控制 反步法 反应--扩散系统 分数阶 分布参数系统 |
英文关键词 boundary control backstepping reaction--diffusion systems fractional order distributed parameter systems |
基金项目 国家自然科学基金项目(61807016, 61174021), 高等学校学科创新引智计划(B12018), 江苏省研究生科研创新计划项目(KYLX15-1170)资助. |
|
中文摘要 |
针对带有空间变化的反应项的耦合分数阶反应--扩散系统边界镇定问题, 利用反步法设计了用于 Robin 边界条件的状态反馈控制. 通过可逆的积分变换将原耦合系统转化为一个稳定的目标系统. 利用变量代换和逐次逼近法分析了核函数矩阵的存在唯一性. 借助分数阶 Lyapunov 直接法证明了闭环系统的 Mittag-Leffler 稳定性. 数值仿真验证了所提出方法的有效性. |
英文摘要 |
The problem of boundary stabilization is considered for a class of coupled fractional reaction--diffusion systems with spatially varying reactions, and a state feedback control for Robin boundary conditions is designed by the backstepping method. The original coupled system is transformed into a stable target system through a reversible integral transformation. The existence and uniqueness of the kernel function matrix is analyzed by using variable substitution and the method of successive approximations. The Mittag-Leffer stability of the close-loop system is proved by the the fractional Lyapunov direct method. Numerical simulations verify the effectiveness of the proposed method. |