引用本文: | 庞燕,罗华丽,邢立宁,任腾.车辆路径优化问题及求解方法研究综述[J].控制理论与应用,2019,36(10):1573~1584.[点击复制] |
PANG Yan,LUO Hua-li,XING Li-ning,REN Teng.A survey of vehicle routing optimization problems and solution methods[J].Control Theory and Technology,2019,36(10):1573~1584.[点击复制] |
|
车辆路径优化问题及求解方法研究综述 |
A survey of vehicle routing optimization problems and solution methods |
摘要点击 11245 全文点击 2516 投稿时间:2019-03-04 修订日期:2019-09-20 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90120 |
2019,36(10):1573-1584 |
中文关键词 车辆路径问题 改进模型 创新方法 车辆路径问题 改进模型 创新方法 智能优化算法 文献综述文献综述 |
英文关键词 vehicle routing problem improved models innovation method intelligent optimization algorithm literature review |
基金项目 国家自然科学基金项目(61773120, 61873328);湖南省社科基金重点委托项目(15WTB23) |
|
中文摘要 |
车辆路径优化问题一直以来是物流研究领域的一个热点和难点. 现实生活的许多问题都可看作是VRP,因此国内外学者近年来不断提出多种车辆路径优化问题的改进模型及求解方法以解决愈加复杂的问题. 为进一步厘清国内外研究现状,在对车辆路径优化改进模型(如多时间窗口VRP模型、动态VRP模型和混合VRP模型等)进行总结分析的基础上,对车辆路径优化创新求解方法(如改进禁忌搜索算法、改进模拟退火算法、改进遗传算法和改进蚁群算法等)也进行了综述. 面向车辆路径优化问题在当前形势下面临的新挑战,展望了车辆路径优化问题的一些新研究方向,如多目标优化、算法的通用性和绿色调度等. |
英文摘要 |
Vehicle routing optimization has always been a hotspot and a difficult issue in the field of logistics research. Many problems in real life can be regarded as VRP. Therefore, scholars at home and abroad have been putting forward many improved models and solutions of vehicle routing optimization problems in recent years to solve more and more complex problems. In order to further clarify the current research status at home and abroad, based on the summary and analysis of vehicle routing optimization models (such as multiple time windows VRP model, dynamic VRP model and mixed VRP model), the innovation solution method of vehicle routing optimization (such as improved tabu search algorithm, improved simulated annealing algorithm, improved genetic algorithm and improvement) Ant colony algorithm and so on are also reviewed. In view of the new challenges facing the vehicle path optimization in the current situation, some new research directions of vehicle routing optimization, such as multi-objective optimization, algorithm generality and green scheduling are looked forward to. |