引用本文:周竞烨,李家旺,邸青,方凯,姚佳琪,黄汉涛.非完整轮式机器人的鲁棒同步编队跟踪及镇定控制[J].控制理论与应用,2020,37(7):1461~1470.[点击复制]
ZHOU Jing-ye,LI Jia-wang,DI Qing,FANG Kai,YAO Jia-qi,HUANG Han-tao.Robust simultaneous formation tracking and stabilization of nonholonomic wheeled mobile robots[J].Control Theory and Technology,2020,37(7):1461~1470.[点击复制]
非完整轮式机器人的鲁棒同步编队跟踪及镇定控制
Robust simultaneous formation tracking and stabilization of nonholonomic wheeled mobile robots
摘要点击 2221  全文点击 809  投稿时间:2019-04-17  修订日期:2020-03-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.90260
  2020,37(7):1461-1470
中文关键词  非完整轮式机器人  编队控制  跟踪  镇定  模糊控制
英文关键词  nonholonomic wheeled mobile robots  formation control  tracking  stabilization  fuzzy control
基金项目  国家自然科学基金(51309133)
作者单位E-mail
周竞烨 宁波大学海运学院 475089940@qq.com 
李家旺* 宁波大学海运学院 lijiawang@nbu.edu.cn 
邸青 宁波大学海运学院  
方凯 宁波大学海运学院  
姚佳琪 宁波大学海运学院  
黄汉涛 宁波大学海运学院  
中文摘要
      本文研究了受到建模不确定性影响和输入限制的非完整轮式机器人的同步编队跟踪和编队镇定问题. 首 先, 基于领航–跟随策略, 确定了编队构型的数学表达形式. 其次, 通过定义含有辅助控制量的跟踪误差, 设计了一 种具有统一结构的分布式运动学控制器, 可使跟随者实现对复杂期望轨迹的跟踪, 包括时变轨迹和固定点等. 然后, 针对建模不确定性影响和输入限制, 基于反步法、模糊控制方法和Lyapunov控制理论, 设计了一种饱和动力学控制 器, 使得系统的闭环跟踪误差全局收敛至零点附近有界领域内. 最后, 通过对比仿真实验, 验证了本文控制方法的有 效性.
英文摘要
      This paper addresses the control problem of simultanous formation tracking and formation stabilization for nonholonomic wheeled mobile robots (NWMRs) subjected to modeling uncertainties and input constraints. Firstly, a mathematic model of formation configuration is presented via leader-follower formation strategy. Secondly, by defining a modefied expression of tracking errors with auxiliary control variables, a unified distributed kinematic controller for each follower is designed, which can realize the tracking for complex reference trajectories, including time-varying trajectories and fixed points. Thirdly, for the purpose of avoiding the difficulties caused by modeling uncertainties and input constraints, by utilizing the back-stepping technique, fuzzy control method and Lyapunov’s control theory, a saturated dynamic controller is presented, which can guarantee the closed-loop tracking errors of each follower globally converge to a bounded neighborhood of the origin. Finally, the effectiveness of the proposed controller is validated by means of comparative simulations.