引用本文: | 郭金玉,刘玉超,李 元.基于局部熵双子空间的多模态过程故障检测[J].控制理论与应用,2020,37(9):2020~2028.[点击复制] |
GUO Jin-yu,LIU Yu-chao,LI Yuan.Fault detection of multimodal processes based on local entropy double subspace[J].Control Theory and Technology,2020,37(9):2020~2028.[点击复制] |
|
基于局部熵双子空间的多模态过程故障检测 |
Fault detection of multimodal processes based on local entropy double subspace |
摘要点击 1749 全文点击 581 投稿时间:2019-04-28 修订日期:2020-04-28 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2020.90297 |
2020,37(9):2020-2028 |
中文关键词 多模态过程 局部概率密度 局部熵 KS检验 Bayesian决策 |
英文关键词 multimodal processes local probability density local entropy KS test Bayesian decision |
基金项目 国家自然科学基金重大项目(61490701), 国家自然科学基金项目(61673279), 辽宁省科学事业公益研究基金项目(2016001006), 辽宁省教育厅项目 (LJ2019007)资助. |
|
中文摘要 |
为了提高非高斯工业过程的检测性能, 提出局部熵双子空间(LEDS)的多模态过程故障检测方法. 运用局部
概率密度估计构建数据的局部熵矩阵, 消除数据的多模态特性. 用Kolmogorov-Smirnov (KS)检验局部熵数据中变
量的正态分布特性, 对高斯分布和非高斯分布的数据分别建立基于PCA的高斯子空间和ICA的非高斯子空间故障
检测模型. 利用Bayesian决策将检测结果转化成发生故障概率的形式, 将检测结果组合成最终的统计信息, 进行故
障检测. 将该方法应用于数值例子和田纳西–伊斯曼多模态过程, 仿真结果表明, 该方法在误报率较低的情况下, 故
障检测率最高, 优于PCA、局部熵PCA(LEPCA)和局部熵ICA(LEICA)方法. |
英文摘要 |
In order to improve the performance of detection in non-Gaussian industrial process, a fault detection method
of multimodal processes based on local entropy double subspace (LEDS) is proposed. The local entropy matrix is constructed
by local probability density estimation to eliminate the multimodal characteristics of the data. The normal distribution of
variables in local entropy data is tested by Kolmogorov-Smirnov (KS). The fault detection models of PCA-based Gaussian
subspace and ICA-based non-Gaussian subspace are established for Gaussian distribution and non-Gaussian distribution
data, respectively. The Bayesian decision is used to transform the detection results into the form of fault probability, and
the detection results are combined into final statistical information for fault detection. The proposed method is applied to
a numerical example and Tennessee-Eastman multimodal process. The simulation results show that the fault detection rate
is the highest when the false alarm rate is lower, which is better than PCA, local entropy PCA (LEPCA) and local entropy
ICA (LEICA) method. |
|
|
|
|
|