引用本文: | 张成,郭青秀,冯立伟,李元.基于密度标准误差的局部保持投影故障检测策略[J].控制理论与应用,2020,37(8):1757~1765.[点击复制] |
ZHANG Cheng,GUO Qing-xiu,FENG Li-wei,LI Yuan.Fault detection strategy based on density standard error associated with locality preserving projections[J].Control Theory and Technology,2020,37(8):1757~1765.[点击复制] |
|
基于密度标准误差的局部保持投影故障检测策略 |
Fault detection strategy based on density standard error associated with locality preserving projections |
摘要点击 1999 全文点击 675 投稿时间:2019-05-30 修订日期:2020-01-21 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2020.90406 |
2020,37(8):1757-1765 |
中文关键词 局部保持投影 k近邻 多模态过程 主元分析 故障检测 |
英文关键词 locality preserving projections k nearest neighbor multimodal process principal component analysis fault detection |
基金项目 国家自然科学基金项目(61490701, 61573088, 61673279), 辽宁省自然科学基金项目(2019–MS–262), 辽宁省教育厅基金项目(LJ2019013)资助. |
|
中文摘要 |
针对协方差结构具有显著差异的多模态过程故障检测问题, 本文提出一种基于密度标准误差的局部保持
投影故障检测策略(LPP–DSE). 首先, 根据样本距离矩阵确定样本截止距离; 接下来, 应用截止距离计算每个样本的
本质密度及其前k近邻样本的估计密度; 最后, 通过样本的密度误差及其k近邻密度的标准差构建统计量并完成过
程监控. 本文方法通过应用局部保持投影(LPP)对过程数据进行维数约减可以保证过程监控的及时性; 同时, 通过设
计密度标准误差(DSE)统计量可以有效提高多模态过程的故障检测率. 此外, 本文给出基于贡献图的诊断方法能够
准确识别故障发生的原因. 通过数值例子和半导体工业实例测试, 并与主元分析、邻域保持嵌入、局部保持投影、
k近邻故障检测等方法比较, 实验结果进一步验证了LPP–DSE方法的有效性. |
英文摘要 |
Aiming at the fault detection of multimodal processes with significant variation in covariance of each mode,
a fault detection strategy based on density standard error associated with locality preserving projections (LPP–DSE) is
proposed in this paper. Firstly, calculate the cutoff distance according to sample distance matrix. Secondly, calculate
respectively the intrinsic density and the estimated density of a sample through cutoff distance. Finally, build a new
statistic to accomplish process monitoring. In LPP–DSE, the timeliness of process monitoring is guaranteed by using
locality preserving projections (LPP); meanwhile, the fault detection rate of a multimode process is improved through
using density standard error (DSE) statistic. Moreover, the proposed fault diagnosis method based on contribution chart is
able to identify accurately the abnormal variables. Compared with principal component analysis, neighborhood preserving
embedding, LPP, k nearest neighbor rule and other methods, the effectiveness of LPP–DSE is verified by a numerical case
and semiconductor etching process. |
|
|
|
|
|