引用本文: | 李豪杰,何汉林,查苗.饱和时滞非线性系统的间接线性矩阵不等式抗饱和设计[J].控制理论与应用,2020,37(7):1595~1600.[点击复制] |
LI Hao-jie,HE Han-lin,ZHA Miao.Anti-windup design for saturated time-delay nonlinear systems: an indirect linear matrix inequality-based approach[J].Control Theory and Technology,2020,37(7):1595~1600.[点击复制] |
|
饱和时滞非线性系统的间接线性矩阵不等式抗饱和设计 |
Anti-windup design for saturated time-delay nonlinear systems: an indirect linear matrix inequality-based approach |
摘要点击 1789 全文点击 675 投稿时间:2019-06-14 修订日期:2020-05-25 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2020.90453 |
2020,37(7):1595-1600 |
中文关键词 一步抗饱和 时滞非线性系统 Takagi-Sugeno模糊模型 线性矩阵不等式 并行分布补偿 |
英文关键词 one-step anti-windup time-delay nonlinear systems Takagi-Sugeno fuzzy model linear matrix inequality parallel distributed compensation |
基金项目 国家自然科学基金项目(61374003), 海军工程大学基础研究基金项目(20161475)资助. |
|
中文摘要 |
当时滞非线性系统具有执行器饱和时, 其稳定性无法得到保证. 为了寻找饱和时滞非线性系统的稳定控制
器, 本文阐述了一种间接线性矩阵不等式(LMI)一步抗饱和设计方法. 首先, 利用Takagi-Sugeno (T–S)模糊模型将一
类饱和时滞非线性系统精确重构, 引入输出反馈并行分布补偿系统得到闭环控制系统. 然后, 运用李雅普诺夫稳定
性理论, 导出闭环系统的稳定条件, 利用一个矩阵不等式的等价引理, 将闭环系统稳定条件间接的转化为两个
LMIs条件, 进而得到间接LMI抗饱和补偿算法, 同时给出了吸引域估计及其优化模型. 最后给出了应用此方案的一
个仿真实例. |
英文摘要 |
The stability of time-delay nonlinear systems cannot be guaranteed when it has actuator saturation. Motivated
by looking for the stability controller of saturated time-delay nonlinear systems, one-step anti-windup design based on the
indirect linear matrix inequality (LMI) approach is proposed in this paper. First, a class of saturated time-delay nonlinear
systems can be reconstructed accurately by using Takagi-Sugeno (T–S) fuzzy model, and then the parallel distributed
compensation system with output feedback is used to get the closed-loop control systems. Then, the stability conditions
of the closed-loop systems are deduced by using Lyapunov stability theory, and the stability conditions of the closed-loop
systems can be converted to two LMIs conditions indirectly by using an equivalent lemma of matrix inequality, then the
anti-windup compensation algorithm based on indirect LMI approach is given, meanwhile, the attraction domain estimation
and its optimization model are presented. Finally, a simulation example is given to illustrate the proposed method. |
|
|
|
|
|