引用本文: | 程朝阳,明杨,洪奕光.特征迁移中投影子空间的分析与构造[J].控制理论与应用,2019,36(11):1834~1843.[点击复制] |
CHENG Zhao-yang,MING Yang,HONG Yi-guang.Subspace projection techniques in feature transfer learning[J].Control Theory and Technology,2019,36(11):1834~1843.[点击复制] |
|
特征迁移中投影子空间的分析与构造 |
Subspace projection techniques in feature transfer learning |
摘要点击 2442 全文点击 924 投稿时间:2019-06-25 修订日期:2019-11-08 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2019.90478 |
2019,36(11):1834-1843 |
中文关键词 迁移学习 子空间投影 线性判别分析 最大均值差异 |
英文关键词 transfer learning subspace projection linear discriminant analysis maximum mean discrepancy |
基金项目 |
|
中文摘要 |
近年来, 针对实际应用场景中可匹配的训练数据不足的问题, 科研人员发展出了迁移学习的概念, 希望通过提取源域数据的特征信息进行迁移, 从而提升目标域的学习效果. 本文根据迁移学习所处理的不同数据类型, 构造了两种典型的模型:单类别投影基构造模型与监督多类别投影模型. 由于子空间投影可以在一定程度上反映原始样本空间的特征性质. 因此, 我们应用线性判别分析的技巧以及最大均值差异的思想,分别构造了上述模型的求解算法并对相应的非线性核方法进行了推广. |
英文摘要 |
In recent years, researchers have developed the concept of transfer learning for lack of effective training data in practice, hoping to improve the performance in target domain by learning the feature information in source domain. According to different types of data in transfer learning, we build two typical models in this paper, which is referred to as one-class projective base construction and supervised multi-class projection. Since the essential properties of the raw data space can be characterized by taking projection in a proper subspace, we study the above models using techniques from linear discriminant analysis (LDA) and maximum mean discrepancy (MMD). Also, we extend those methods to the corresponding nonlinear kernel cases. |
|
|
|
|
|